This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Various studies estimate that 19?63% of individuals with calcium containing kidney stones have hypocitraturia as a contributing cause. Understanding the mechanisms of the regulation of citrate transport will hopefully lead to improved diagnosis of causes of hypocitraturia. Urinary citrate is an important inhibitor of calcium nephrolithiasis and is primarily determined by fractional reabsorption in the proximal tubule. The dicarboxylate transporter (NaDC1) is presumably the main mechanism of apical uptake of filtered citrate along the nephron. The most important physiologic regulator of urinary citrate excretion is acid-base status. Also urinary citrate increases as urinary calcium increases. The proposed studies will address the acute regulation of citrate transport by calcium, and chronic regulation of citrate transport by acid-base perturbations and hypokalemia. Using a newly characterized in vitro model of citrate transport, OK cells studied under particular conditions, citrate and dicarboxylate uptake are sensitive to extracellular calcium. These studies indicate that the OK cell citrate transport system is likely a novel citrate transporter. Recently another cell line of dicarboxylate transport was developed. Human retinal pigmented epithelial cells stably transfected with human NaDC1 (CUBS cells) are responsive to acid-base conditions in vitro and will therefore represent a powerful new model. Two hypotheses will be examined: 1. Calcium acutely inhibits a novel citrate transport process in mammalian proximal tubule cells. 2. Chronic regulation of proximal tubule transport of citrate is accomplished by redundant mechanisms including changes in NaDC1 protein production and insertion of pre-existing NaDC1 protein into the apical membrane from sub-apical vesicles.
The specific aims are: 1. To delineate the calcium sensitive citrate transport process by: demonstrating that the calcium sensitive citrate transport process is a novel transporter, not NaDC1, and determining the cellular mechanisms whereby extracellular calcium alters this citrate transport process. 2. To delineate the mechanisms of chronic regulation of citrate transport by acid-base perturbations and hypokalemia. To achieve this aim three modes of regulation will be examined: transcriptional (or mRNA stability) regulation, regulation at the protein level, and regulation by trafficking of NaDC1 into and out of the apical membrane from sub-apical vesicles under conditions of metabolic acidosis and hypokalemia.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017659-08
Application #
7959841
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
8
Fiscal Year
2009
Total Cost
$172,530
Indirect Cost
Name
Tulane University
Department
Physiology
Type
Schools of Medicine
DUNS #
053785812
City
New Orleans
State
LA
Country
United States
Zip Code
70118
Anderson, Christopher E; Hamm, L Lee; Batuman, Gem et al. (2018) The association of angiogenic factors and chronic kidney disease. BMC Nephrol 19:117
Gonzalez, Alexis A; Zamora, Leonardo; Reyes-Martinez, Cristian et al. (2017) (Pro)renin receptor activation increases profibrotic markers and fibroblast-like phenotype through MAPK-dependent ROS formation in mouse renal collecting duct cells. Clin Exp Pharmacol Physiol 44:1134-1144
Hu, T; Yao, L; Reynolds, K et al. (2016) The effects of a low-carbohydrate diet on appetite: A randomized controlled trial. Nutr Metab Cardiovasc Dis 26:476-88
Hu, Tian; Yao, Lu; Reynolds, Kristi et al. (2016) Adherence to low-carbohydrate and low-fat diets in relation to weight loss and cardiovascular risk factors. Obes Sci Pract 2:24-31
Gonzalez, Alexis A; Prieto, Minolfa C (2015) Renin and the (pro)renin receptor in the renal collecting duct: Role in the pathogenesis of hypertension. Clin Exp Pharmacol Physiol 42:14-21
Chen, Jing; Hamm, L Lee; Mohler, Emile R et al. (2015) Interrelationship of Multiple Endothelial Dysfunction Biomarkers with Chronic Kidney Disease. PLoS One 10:e0132047
Rivara, Matthew B; Ikizler, T Alp; Ellis, Charles D et al. (2015) Association of plasma F2-isoprostanes and isofurans concentrations with erythropoiesis-stimulating agent resistance in maintenance hemodialysis patients. BMC Nephrol 16:79
Lee, Belinda T; Ahmed, Faheemuddin A; Hamm, L Lee et al. (2015) Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol 16:77
Li, Wencheng; Sullivan, Michelle N; Zhang, Sheng et al. (2015) Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension 65:352-61
Gonzalez, Alexis A; Prieto, Minolfa C (2015) Roles of collecting duct renin and (pro)renin receptor in hypertension: mini review. Ther Adv Cardiovasc Dis 9:191-200

Showing the most recent 10 out of 207 publications