This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Doxorubicin (DOX) is a highly effective antitumor agent that can cause heart failure after chronic use in cancer patients. A major theory for DOX cardiac toxicity is the generation of reactive oxygen species (ROS). However, clinical trials have shown very limited effect of antioxidant therapy. The goal of this project is to elucidate novel mechanisms of DOX cardiotoxicity that may be independent of ROS. DOX activates the ubiquitin-proteasome system (UPS) in cardiomyocytes, leading to the degradation of various cardiac proteins. DOX also induces massive autophagy (ATG), a self-digestion mechanism that may cause autophagic cell death if activated inappropriately. We hypothesize that abnormal activation of the UPS and ATG is a novel mechanism of DOX cardiotoxicity, and that inhibition of UPS or ATG will reduce DOX-induced cardiac injury. These hypotheses will be tested by the following specific aims:
Aim 1 will determine if blockade of UPS activation by a proteasome inhibitor or small interfering RNA (siRNA)-mediated knockdown of proteasomal subunits can attenuate DOX cardiotoxicity in vitro and in vivo.
Aim 2 will test the hypothesis that activation of ATG contributes to DOX cardiotoxicity. We will determine if siRNA knockdown or heterozygous deletion of Beclin1, a gene required for ATG initiation, is able to attenuate DOX cardiotoxicity in vitro and in vivo.
Aim 3 will determine if DOX-induced activation of cellular degradation pathways is secondary to oxidative stress. We will determine if reducing ROS production by inactivating NAD(P)H oxidase can block DOX-induced UPS or ATG activity.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017662-08
Application #
8168338
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
8
Fiscal Year
2010
Total Cost
$296,237
Indirect Cost
Name
Sanford Research/Usd
Department
Type
DUNS #
050113252
City
Sioux Falls
State
SD
Country
United States
Zip Code
57104
O'Connell, Timothy D; Block, Robert C; Huang, Shue P et al. (2017) ?3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacy and novel signaling through free fatty acid receptor 4. J Mol Cell Cardiol 103:74-92
Eclov, Julie A; Qian, Qingwen; Redetzke, Rebecca et al. (2015) EPA, not DHA, prevents fibrosis in pressure overload-induced heart failure: potential role of free fatty acid receptor 4. J Lipid Res 56:2297-308
Savinova, Olga V; Fillaus, Kristi; Harris, William S et al. (2015) Effects of niacin and omega-3 fatty acids on the apolipoproteins in overweight patients with elevated triglycerides and reduced HDL cholesterol. Atherosclerosis 240:520-5
McKenzie, Casey W; Craige, Branch; Kroeger, Tiffany V et al. (2015) CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice. Mol Biol Cell 26:3140-9
Kobayashi, Satoru; Liang, Qiangrong (2015) Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852:252-61
O'Connell, Timothy D; Jensen, Brian C; Baker, Anthony J et al. (2014) Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 66:308-33
Savinova, Olga V; Fillaus, Kristi; Jing, Linhong et al. (2014) Reduced apolipoprotein glycosylation in patients with the metabolic syndrome. PLoS One 9:e104833
Jensen, Brian C; O?Connell, Timothy D; Simpson, Paul C (2014) Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 63:291-301
Wu, Steven C; Dahl, Erika F; Wright, Casey D et al. (2014) Nuclear localization of a1A-adrenergic receptors is required for signaling in cardiac myocytes: an “inside-out” a1-AR signaling pathway. J Am Heart Assoc 3:e000145
Xu, Xianmin; Kobayashi, Satoru; Chen, Kai et al. (2013) Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288:18077-92

Showing the most recent 10 out of 65 publications