This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Angiogenesis, the process of formation of new capillaries from preexisting blood vessels, is essential for the proper organ development and tissue repair. However, uncontrollable angiogenesis may lead to pathologies such as chronic inflammation, rheumatoid arthritis, and solid-tumor growth. Our long-term goals are to define the role of human alkaline phytoceramidase (haPHC) in regulating angiogenesis and to develop this concept into a new strategy to treat angiogenesis-related diseases by targeting this enzyme. haPHC, a novel enzyme which the PI identified recently, cleaves hydroxylceramide, one type of ceramides, to generate sphingosine, which is in turn phosphorylated to generate sphingosine-1-phosphate (S1P) through the action of sphingosine kinases. S1P mediates angiogenesis and vascular genesis. Our studies demonstrate that 1) haPHC mRNA is highly expressed in placenta in which angiogenesis and vascular genesis occur actively; and 2) haPHC and its homologous ceramidases co-regulate the levels of S1P. These results support the hypothesis that haPHC regulates angiogenesis by regulating the levels of S1P. To test this hypothesis, we proposed three specific aims:
Aim 1 : to determine the role of haPHC in growth and survival of human umbilical vein endothelial cells (HUVEC). We will determine whether haPHC up-regulation elevates the levels of S1P in HUVEC and results in cell proliferation whereas haPHC down-regulation has the opposite effects; and whether growth inhibition induced by haPHC down-regulation is alleviated or suppressed by exogenous S1P.
Aim 2 : to determine mechanism of the human alkaline phytoceramidase action. We will express haPHC in HaCaT cells and determine its substrate specificity, effects of cations and lipids on its activity, its cellular localization, and tissue specific expression.
Aim 3 : to determine the role of the alkaline phytoceramidase in angiogenesis. We will generate alkaline phytoceramidase (maPHC) knockout mice and analyze developmental angiogenesis and vascular genesis in maPHC null versus wild type mice.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017677-05
Application #
7381850
Study Section
Special Emphasis Panel (ZRR1-RI-A (02))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
5
Fiscal Year
2006
Total Cost
$71,282
Indirect Cost
Name
Medical University of South Carolina
Department
Biochemistry
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Zunke, Friederike; Moise, Alexandra C; Belur, Nandkishore R et al. (2018) Reversible Conformational Conversion of ?-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron 97:92-107.e10
Vilaça, Rita; Barros, Ivo; Matmati, Nabil et al. (2018) The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 1864:79-88
Chen, Wei; Wang, Bo; Gruber, Jordon D et al. (2018) Acyl Carrier Protein 3 Is Involved in Oxidative Stress Response in Pseudomonas aeruginosa. Front Microbiol 9:2244
Fekry, Baharan; Jeffries, Kristen A; Esmaeilniakooshkghazi, Amin et al. (2018) C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat Commun 9:4149
Jin, Junfei; Lu, Zhongyang; Li, Yanchun et al. (2018) LPS and palmitate synergistically stimulate sphingosine kinase 1 and increase sphingosine 1 phosphate in RAW264.7 macrophages. J Leukoc Biol 104:843-853
Snider, Justin M; Snider, Ashley J; Obeid, Lina M et al. (2018) Probing de novo sphingolipid metabolism in mammalian cells utilizing mass spectrometry. J Lipid Res 59:1046-1057
Zhang, Ning; Valentine, Joseph M; Zhou, You et al. (2017) Sustained NF?B inhibition improves insulin sensitivity but is detrimental to muscle health. Aging Cell 16:847-858
Pulkoski-Gross, Michael J; Uys, Joachim D; Orr-Gandy, K Alexa et al. (2017) Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis. Prostaglandins Other Lipid Mediat 130:47-56
Alexaki, Aikaterini; Clarke, Benjamin A; Gavrilova, Oksana et al. (2017) De Novo Sphingolipid Biosynthesis Is Required for Adipocyte Survival and Metabolic Homeostasis. J Biol Chem 292:3929-3939
Hao, Limin; Ben-David, Oshrit; Babb, Suzann M et al. (2017) Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 42:951-962

Showing the most recent 10 out of 196 publications