This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Angiogenesis, the process of formation of new capillaries from preexisting blood vessels, is essential for the proper organ development and tissue repair. However, uncontrollable angiogenesis may lead to pathologies such as chronic inflammation, diabetic retinopathy, rheumatoid arthritis, and growth of solid tumors. Angiogenesis is coordinately regulated by cytokines, chemokines, growth factors, and inhibitors. In addition to these proteinaceous factors, several lipid factors have been shown to play an important role in mediating angiogenesis. Prominent among them are sphingosine-1-P (S1P) and its analogs which potentiates growth factor-induced angiogenesis by bonding to G protein coupled receptors of the Edg receptor family. S1P is a metabolite of sphingolipids. It is generated from sphingosine through the action of sphingosine kianse. Sphingosine in turn is generated from hydrolysis of ceramide through the action of ceramidases. More recently, several studies demonstrate that ceramide induces growth arrest and apoptosis of endothelial cells. These results suggest that regulation of metabolism of sphingolipids may control angiogenesis. Our results for the first time demonstrate that the human alkaline phytoceramidase is a key enzyme that regulates the levels of ceramides and the analog of S1P, dihdyrosphingosine-1-P. This establishes the human alkaline phytoceramidase as a potential target for chemotherapeutic interventions of tumor angiogenesis and growth.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR017677-06
Application #
7610445
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2007-08-01
Project End
2008-06-30
Budget Start
2007-08-01
Budget End
2008-06-30
Support Year
6
Fiscal Year
2007
Total Cost
$68,722
Indirect Cost
Name
Medical University of South Carolina
Department
Biochemistry
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Zunke, Friederike; Moise, Alexandra C; Belur, Nandkishore R et al. (2018) Reversible Conformational Conversion of ?-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron 97:92-107.e10
Vilaça, Rita; Barros, Ivo; Matmati, Nabil et al. (2018) The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 1864:79-88
Chen, Wei; Wang, Bo; Gruber, Jordon D et al. (2018) Acyl Carrier Protein 3 Is Involved in Oxidative Stress Response in Pseudomonas aeruginosa. Front Microbiol 9:2244
Fekry, Baharan; Jeffries, Kristen A; Esmaeilniakooshkghazi, Amin et al. (2018) C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat Commun 9:4149
Jin, Junfei; Lu, Zhongyang; Li, Yanchun et al. (2018) LPS and palmitate synergistically stimulate sphingosine kinase 1 and increase sphingosine 1 phosphate in RAW264.7 macrophages. J Leukoc Biol 104:843-853
Snider, Justin M; Snider, Ashley J; Obeid, Lina M et al. (2018) Probing de novo sphingolipid metabolism in mammalian cells utilizing mass spectrometry. J Lipid Res 59:1046-1057
Alexaki, Aikaterini; Clarke, Benjamin A; Gavrilova, Oksana et al. (2017) De Novo Sphingolipid Biosynthesis Is Required for Adipocyte Survival and Metabolic Homeostasis. J Biol Chem 292:3929-3939
Hao, Limin; Ben-David, Oshrit; Babb, Suzann M et al. (2017) Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 42:951-962
Boppana, Nithin B; Kraveka, Jacqueline M; Rahmaniyan, Mehrdad et al. (2017) Fumonisin B1 Inhibits Endoplasmic Reticulum Stress Associated-apoptosis After FoscanPDT Combined with C6-Pyridinium Ceramide or Fenretinide. Anticancer Res 37:455-463
Dupre, Tess V; Doll, Mark A; Shah, Parag P et al. (2017) Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J Lipid Res 58:1439-1452

Showing the most recent 10 out of 196 publications