This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The Protein Bioscience Core was created to assist COBRE lipidomics investigators in studying structures and functions of proteins involved in the regulation of lipid metabolism and signaling. Over the years, the Core has transitioned itself from a strictly consultation role to a more active role in servicing investigators in various aspects of protein science. This mainly included the generic service of expressing and purifying recombinant proteins from E. coli cultures. In addition, instruments such as dynamic light scattering and circular dichroism spectrometers were made available to researchers, together with in-depth tutoring, for the characterization of the physical properties of proteins. Recently, the Core started to offer more specialized services, including generation of stable mammalian cell lines expressing protein of interest, antibody design and purification, immunoprecipitation, protein crystal screening, peptide synthesis, protein modification, HPLC-based assays, and fat Western blotting. Because of the variety of services provided by the Protein Bioscience Core and the strong technical supporting base, they allow researchers who are not familiar with protein science, but are interested in studying protein structures and functions, to perform their experiments with greater ease.
The aims of the Core are: 1) To produce proteins of interest for individual investigators that are needed for structural and functional characterization;2) To offer a variety of protein-related specialty services to suit the needs of investigators;and 3) to enhance the understanding and capability of investigators in protein science through mentoring and consultation. Taken together, these aims should contribute to the scientific achievement of the targeted COBRE investigators.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017677-10
Application #
8360389
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2011-07-01
Project End
2012-07-18
Budget Start
2011-07-01
Budget End
2012-07-18
Support Year
10
Fiscal Year
2011
Total Cost
$127,824
Indirect Cost
Name
Medical University of South Carolina
Department
Biochemistry
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Zunke, Friederike; Moise, Alexandra C; Belur, Nandkishore R et al. (2018) Reversible Conformational Conversion of ?-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron 97:92-107.e10
Vilaça, Rita; Barros, Ivo; Matmati, Nabil et al. (2018) The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 1864:79-88
Chen, Wei; Wang, Bo; Gruber, Jordon D et al. (2018) Acyl Carrier Protein 3 Is Involved in Oxidative Stress Response in Pseudomonas aeruginosa. Front Microbiol 9:2244
Fekry, Baharan; Jeffries, Kristen A; Esmaeilniakooshkghazi, Amin et al. (2018) C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat Commun 9:4149
Jin, Junfei; Lu, Zhongyang; Li, Yanchun et al. (2018) LPS and palmitate synergistically stimulate sphingosine kinase 1 and increase sphingosine 1 phosphate in RAW264.7 macrophages. J Leukoc Biol 104:843-853
Snider, Justin M; Snider, Ashley J; Obeid, Lina M et al. (2018) Probing de novo sphingolipid metabolism in mammalian cells utilizing mass spectrometry. J Lipid Res 59:1046-1057
Boppana, Nithin B; Kraveka, Jacqueline M; Rahmaniyan, Mehrdad et al. (2017) Fumonisin B1 Inhibits Endoplasmic Reticulum Stress Associated-apoptosis After FoscanPDT Combined with C6-Pyridinium Ceramide or Fenretinide. Anticancer Res 37:455-463
Dupre, Tess V; Doll, Mark A; Shah, Parag P et al. (2017) Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J Lipid Res 58:1439-1452
Hammad, Samar M; Baker, Nathaniel L; El Abiad, Jad M et al. (2017) Increased Plasma Levels of Select Deoxy-ceramide and Ceramide Species are Associated with Increased Odds of Diabetic Neuropathy in Type 1 Diabetes: A Pilot Study. Neuromolecular Med 19:46-56
Zhang, Ning; Valentine, Joseph M; Zhou, You et al. (2017) Sustained NF?B inhibition improves insulin sensitivity but is detrimental to muscle health. Aging Cell 16:847-858

Showing the most recent 10 out of 196 publications