This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Inflammatory cytokines, such as Interleukin 6 (IL-6) has been shown to be involved in the progression of both type 1 and type 2 diabetes. IL-6 levels are elevated in the retina during diabetes. In the central nervous system other IL-6 family members, including ciliary neurotrophic factor (CNTF) and Leukemia Inhibitory Factor (LIF), are elevated during ischemic stress and injury. Members of the IL-6 family of cytokines do not share sequence homology, but are grouped together based on activation of a common signaling receptor, gp130. Because multiple ligands signal through gp130, there is significant overlap in their biological activity, and since ligands of gp130 are present during multiple stages of disease it is possible that multiple ligands of the same receptor may play multiple roles in disease progression. To demonstrate the complete involvement of the gp130 pathway in disease progression we are proposing to two complimentary approaches to block gp130 signaling in vascular endothelial cells and in adult animals. In the first aim we will use mice with gp130 inactivated in vascular endothelial cells using the tie2-cre transgenic mouse and the loxP targeted gp130 mouse. These mice will undergo development without gp130 in vascular endothelial cells and bone marrow derived cells. In the second aim we will use a protein antagonist of LIFRb to block the activity of neurotrophic IL-6 family members (LIF and CNTF) in adult animals. In both aims we will determine whether or not blocking gp130 signaling reduces the severity and progression of diabetic complications in the eye.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017703-08
Application #
7959971
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
8
Fiscal Year
2009
Total Cost
$209,946
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Bhatti, Faizah; Kung, Johannes W; Vieira, Frederico (2018) Retinal degeneration mutation in Sftpa1tm1Kor/J and Sftpd -/- targeted mice. PLoS One 13:e0199824
Vieira, Frederico; Kung, Johannes W; Bhatti, Faizah (2017) Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. Ann Anat 211:184-201
Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena et al. (2016) Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress. J Neurochem 136:931-46
Stiles, Megan; Qi, Hui; Sun, Eleanor et al. (2016) Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration. J Lipid Res 57:818-31
Bennett, Lea D; Anderson, Robert E (2016) Current Progress in Deciphering Importance of VLC-PUFA in the Retina. Adv Exp Med Biol 854:145-51
Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei et al. (2016) The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility. J Biol Chem 291:8721-34
Ma, Hongwei; Ding, Xi-Qin (2016) Thyroid Hormone Signaling and Cone Photoreceptor Viability. Adv Exp Med Biol 854:613-8
Cai, Xue; Chen, Lijuan; McGinnis, James F (2015) Correlation of ER stress and retinal degeneration in tubby mice. Exp Eye Res 140:130-138
Bhatti, Faizah; Ball, Genevieve; Hobbs, Ronald et al. (2015) Pulmonary surfactant protein a is expressed in mouse retina by Müller cells and impacts neovascularization in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 56:232-42
Rajala, Raju V S; Rajala, Ammaji; Morris, Andrew J et al. (2014) Phosphoinositides: minor lipids make a major impact on photoreceptor cell functions. Sci Rep 4:5463

Showing the most recent 10 out of 245 publications