This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Obesity is a disorder that imposes increased risk of diabetes, cardiovascular disease, and cancer. Leptin, a protein produced by fat tissue, plays an important role in regulating food intake and appetite by acting on specific receptors in the brain. Differences in the fat's production rate of leptin, together with resistance to leptin at its site of action or a combination of these factors can influence eating behaviors and energy use to cause obesity. Leptin also functions to regulate sexual maturity and reproduction, immune responses and bone formation. Our research focuses in understanding the mechanisms that govern leptin production and secretion in adipose (fat) tissue. In order to study protein-protein interactions that regulate leptin synthesis, traffic and secretion we utilized the yeast two hybrid technique to identify proteins that bind to leptin in adipocytes. We constructed and screened an adipose cDNA library with the full length leptin cDNA as a bait. Positive clones were verified in liquid -galactosidase assay and subsequently DNA has been isolated from yeast for insert analysis and sequencing. We have identified several proteins that interact with leptin. Biochemical and in vitro functional studies will be used to confirm these interactions and to examine the role that these proteins play in the regulation of leptin and other adipokines. These protein interactions will be further characterized using NMR structural stu

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017708-05
Application #
7381963
Study Section
Special Emphasis Panel (ZRR1-RI-A (03))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
5
Fiscal Year
2006
Total Cost
$76,519
Indirect Cost
Name
University of Kansas Lawrence
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Garabedian, Alyssa; Baird, Matthew A; Porter, Jacob et al. (2018) Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal Chem 90:2918-2925
Jeanne Dit Fouque, Kevin; Garabedian, Alyssa; Porter, Jacob et al. (2017) Fast and Effective Ion Mobility-Mass Spectrometry Separation of d-Amino-Acid-Containing Peptides. Anal Chem 89:11787-11794
Alaofi, Ahmed; Farokhi, Elinaz; Prasasty, Vivitri D et al. (2017) Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. J Biomol Struct Dyn 35:92-104
Pang, Xiao-Yan; Wang, Suya; Jurczak, Michael J et al. (2017) Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch Biochem Biophys 633:93-102
McNiff, Michaela L; Chadwick, Jennifer S (2017) Metal-bound claMP Tag inhibits proteolytic cleavage. Protein Eng Des Sel 30:467-475
Gowthaman, Ragul; Miller, Sven A; Rogers, Steven et al. (2016) DARC: Mapping Surface Topography by Ray-Casting for Effective Virtual Screening at Protein Interaction Sites. J Med Chem 59:4152-70
Kumar, Ritesh; Qi, Yifei; Matsumura, Hirotoshi et al. (2016) Replacing Arginine 33 for Alanine in the Hemophore HasA from Pseudomonas aeruginosa Causes Closure of the H32 Loop in the Apo-Protein. Biochemistry 55:2622-31
Meekins, David A; Zhang, Xin; Battaile, Kevin P et al. (2016) 1.45?Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae. Acta Crystallogr F Struct Biol Commun 72:853-862
Damalanka, Vishnu C; Kim, Yunjeong; Alliston, Kevin R et al. (2016) Oxadiazole-Based Cell Permeable Macrocyclic Transition State Inhibitors of Norovirus 3CL Protease. J Med Chem 59:1899-913
Wahome, Newton; Sully, Erin; Singer, Christopher et al. (2016) Novel Ricin Subunit Antigens With Enhanced Capacity to Elicit Toxin-Neutralizing Antibody Responses in Mice. J Pharm Sci 105:1603-1613

Showing the most recent 10 out of 256 publications