This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Six percent of the USA population suffers from diabetes mellitus, with the greatest mortalities caused by cardiovascular complications. Diabetic cardiomyopathy is a chronic condition and is characterized by impaired function and alterations in the morphological structure of the heart muscle. The molecular mechanisms underlying this pathology are not well understood, however hyperglycemia is thought to be the main etiological factor in its development. Many proteins in the diabetic heart show profoundly altered function, due to changes in their expression level and/or structure. Changes in posttranslational modifications of proteins have been linked to a variety of disease states; however, this area is poorly explored in the malfunctioning diabetic heart. The objective of this research project is to identify the molecular mechanisms responsible for cardiac protein modification that may contribute to development of diabetic cardiomyopathy. The autoimmune diabetic rat model, the closest animal counterpart of human type 1 diabetes, will be used in this study, and left ventricular tissue will be analyzed as diabetic heart dysfunction initially develops in the left ventricle. We will perform diabetic heart protein fractionation, separation using 2D-PAGE, in-gel digestion, and identification of posttranslationally modified proteins and localization of the modified sites using MALDI-TOF mass spectrometry. In addition we will uncover possible mechanisms of such modifications in cardiac proteins in diabetes. At the completion of the study we will have better understanding of the molecular pathways involved in the development of diabetic cardiomyopathy that will allow to identify candidate proteins for therapeutic targeting. This project will contribute to our long-term research goal which is to elucidate the mechanisms responsible for the detrimental effects of diabetes in the heart, and to identify effective interventions to halt this pathological condition.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR017708-06A1
Application #
7720684
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2008-05-15
Project End
2009-03-31
Budget Start
2008-05-15
Budget End
2009-03-31
Support Year
6
Fiscal Year
2008
Total Cost
$52,573
Indirect Cost
Name
University of Kansas Lawrence
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Garabedian, Alyssa; Baird, Matthew A; Porter, Jacob et al. (2018) Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal Chem 90:2918-2925
Jeanne Dit Fouque, Kevin; Garabedian, Alyssa; Porter, Jacob et al. (2017) Fast and Effective Ion Mobility-Mass Spectrometry Separation of d-Amino-Acid-Containing Peptides. Anal Chem 89:11787-11794
Alaofi, Ahmed; Farokhi, Elinaz; Prasasty, Vivitri D et al. (2017) Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. J Biomol Struct Dyn 35:92-104
Pang, Xiao-Yan; Wang, Suya; Jurczak, Michael J et al. (2017) Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch Biochem Biophys 633:93-102
McNiff, Michaela L; Chadwick, Jennifer S (2017) Metal-bound claMP Tag inhibits proteolytic cleavage. Protein Eng Des Sel 30:467-475
Budiardjo, S Jimmy; Licknack, Timothy J; Cory, Michael B et al. (2016) Full and Partial Agonism of a Designed Enzyme Switch. ACS Synth Biol 5:1475-1484
O'Neil, Pierce; Lovell, Scott; Mehzabeen, Nurjahan et al. (2016) Crystal structure of histone-like protein from Streptococcus mutans refined to 1.9?Å resolution. Acta Crystallogr F Struct Biol Commun 72:257-62
Gowthaman, Ragul; Miller, Sven A; Rogers, Steven et al. (2016) DARC: Mapping Surface Topography by Ray-Casting for Effective Virtual Screening at Protein Interaction Sites. J Med Chem 59:4152-70
Kumar, Ritesh; Qi, Yifei; Matsumura, Hirotoshi et al. (2016) Replacing Arginine 33 for Alanine in the Hemophore HasA from Pseudomonas aeruginosa Causes Closure of the H32 Loop in the Apo-Protein. Biochemistry 55:2622-31
Meekins, David A; Zhang, Xin; Battaile, Kevin P et al. (2016) 1.45?Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae. Acta Crystallogr F Struct Biol Commun 72:853-862

Showing the most recent 10 out of 256 publications