This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. critically important for therapeutic efficacy. Unfortunately, many methods for drug delivery are often highly inefficient due to non-ideal serum-stability, transport across biological barriers, and release at the target site. To address these problems, we will create bio-responsive, polymeric nano-containers for the selective delivery of therapeutic compounds to pre-determined cellular locations. We will combine the solution selfassembly of block copolymers with selective targeting and cleaving peptide linkages to permit vesicle evolution in response to critical environmental stimuli, eventually leading to site-specific release of the encapsulated payload. In the first specific aim, we will create novel peptide-containing block copolymers and characterize their self-assembly in aqueous solution. These amphiphilic copolymers will be designed to assemble into vesicular structures. Peptides designed to promote endocytotic uptake (1) and endosomal release (2) will be sequentially incorporated into the hydrophilic backbone of the block copolymer in a layered fashion. In the second specific aim, we will evaluate the protease-sensitivity and targeting efficiency of each peptide layer. The protease accessibility of each peptide sequence, as well as vesicle stability, will be assessed as a function of peptide position in the vesicle's corona. The cell-vesicle binding, vesicle internalization, and endosomolytic activity of the vesicles also will be evaluated. In the third specific aim, we will validate the ability of the peptides to direct vesicle transport to and rupture within the cytosol, and we will evaluate the cytotoxicity of both payload-free and cytotoxinincorporating vesicles. Vesicle rupture will be induced by selective placement of peptide (2) proximal to the hydrophobic block of the polymer. Our long-term vision for this project is the development of a nucleic acid delivery system for the selective targeting of tumor stromal fibroblasts and/or inflammatory cells. We envision the complete de novo design of modular vesicular nano-capsules containing a series of location specific """"""""sheddable"""""""" shells to direct payload transport in response to environmental cues at each transport barrier.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017716-08
Application #
8168490
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2010-08-01
Project End
2011-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
8
Fiscal Year
2010
Total Cost
$414,646
Indirect Cost
Name
University of Delaware
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Li, Linqing; Stiadle, Jeanna M; Levendoski, Elizabeth E et al. (2018) Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 106:2229-2242
Drolen, Claire; Conklin, Eric; Hetterich, Stephen J et al. (2018) pH-Driven Mechanistic Switching from Electron Transfer to Energy Transfer between [Ru(bpy)3]2+ and Ferrocene Derivatives. J Am Chem Soc 140:10169-10178
Potocny, Andrea M; Riley, Rachel S; O'Sullivan, Rachel K et al. (2018) Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index. Inorg Chem 57:10608-10615
Potocny, Andrea M; Pistner, Allen J; Yap, Glenn P A et al. (2017) Electrochemical, Spectroscopic, and 1O2 Sensitization Characteristics of Synthetically Accessible Linear Tetrapyrrole Complexes of Palladium and Platinum. Inorg Chem 56:12703-12711
Li, Linqing; Mahara, Atsushi; Tong, Zhixiang et al. (2016) Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications. Adv Healthc Mater 5:266-75
Li, Linqing; Stiadle, Jeanna M; Lau, Hang K et al. (2016) Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 108:91-110
Ooms, Kristopher J; Vega, Alexander J; Polenova, Tatyana et al. (2015) Double and zero quantum filtered (2)H NMR analysis of D2O in intervertebral disc tissue. J Magn Reson 258:6-11
Suiter, Christopher L; Quinn, Caitlin M; Lu, Manman et al. (2015) MAS NMR of HIV-1 protein assemblies. J Magn Reson 253:10-22
Li, Linqing; Luo, Tianzhi; Kiick, Kristi L (2015) Temperature-triggered phase separation of a hydrophilic resilin-like polypeptide. Macromol Rapid Commun 36:90-5
Lau, Hang Kuen; Kiick, Kristi L (2015) Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 16:28-42

Showing the most recent 10 out of 177 publications