This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The movement of luminal contents along the gastrointestinal (GI) tract is generated by contractions and relaxations of the tunica muscularis. These contractions propel luminal contents in an oral to aboral direction along the GI tract. When a partial luminal obstruction occurs, which impairs the normal flow of contents, the bowel ceases to function properly. One of the most pronounced changes that occur in response to bowel obstruction is the dramatic increase in the number and size of individual smooth muscle cells and a marked enlargement of enteric neurons. Despite the prevalence of hypertrophy in GI tissues and the well documented structural changes that occur, the mechanisms underlying this response to increased functional demands and the physiological changes that occur during this process are very poorly defined. This lack of understanding may in part be attributable to the failure to employ state of the art integrative technologies to examine this problem. The novel techniques described in this proposal will provide an unprecedented insight into the mechanisms underlying the pathophysiological changes that occur in response to colonic hypertrophy. These techniques will include patch clamp and intracellular microelectrode recordings, calcium imaging, immunohistochemistry, neurotransmitter release studies, single cell RT-PCR and a proteomics approach. We will determine which elements of the neuro-neuronal and neuromuscular transmission pathways are affected by colonic hypertrophy. The physiological changes that occur during hypertrophy will be examined using mutant mice which exhibit colonic hypertrophy and mice in which hypertrophy is induced by a partial obstruction of the colon. This study will also provide the first comprehensive analysis of the hypertrophic changes in the neuronal circuits and chemical coding of specific classes of enteric neurons. In addition, these studies will determine if smooth muscle displays plasticity and can revert to its original state following recovery from colonic hypertrophy.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018751-04
Application #
7382019
Study Section
Special Emphasis Panel (ZRR1-RI-3 (01))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
4
Fiscal Year
2006
Total Cost
$211,911
Indirect Cost
Name
University of Nevada Reno
Department
Physiology
Type
Schools of Medicine
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Heredia, Dante J; Feng, Cheng-Yuan; Agarwal, Andrea et al. (2018) Postnatal Restriction of Activity-Induced Ca2+ Responses to Schwann Cells at the Neuromuscular Junction Are Caused by the Proximo-Distal Loss of Axonal Synaptic Vesicles during Development. J Neurosci 38:8650-8665
Brijs, Jeroen; Hennig, Grant W; Gräns, Albin et al. (2017) Exposure to seawater increases intestinal motility in euryhaline rainbow trout (Oncorhynchus mykiss). J Exp Biol 220:2397-2408
Heredia, Dante J; Schubert, Douglas; Maligireddy, Siddhardha et al. (2016) A Novel Striated Muscle-Specific Myosin-Blocking Drug for the Study of Neuromuscular Physiology. Front Cell Neurosci 10:276
Schuster, Andrew; Skinner, Michael K; Yan, Wei (2016) Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environ Epigenet 2:
Scurry, Alexandra N; Heredia, Dante J; Feng, Cheng-Yuan et al. (2016) Structural and Functional Abnormalities of the Neuromuscular Junction in the Trembler-J Homozygote Mouse Model of Congenital Hypomyelinating Neuropathy. J Neuropathol Exp Neurol 75:334-46
Bao, Jianqiang; Tang, Chong; Yuan, Shuiqiao et al. (2015) UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome. Development 142:352-62
Park, C; Lee, M Y; Slivano, O J et al. (2015) Loss of serum response factor induces microRNA-mediated apoptosis in intestinal smooth muscle cells. Cell Death Dis 6:e2011
Winbush, Ari; Gruner, Matthew; Hennig, Grant W et al. (2015) Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population. J Neurosci Methods 249:66-74
Lee, Moon Young; Park, Chanjae; Berent, Robyn M et al. (2015) Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes. PLoS One 10:e0133751
Yuan, Shuiqiao; Stratton, Clifford J; Bao, Jianqiang et al. (2015) Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc Natl Acad Sci U S A 112:E430-9

Showing the most recent 10 out of 94 publications