This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. In many smooth muscles, stretch activates contraction. However, normal filling of the urinary bladder is accomplished with minimal increase in pressure until the bladder is near functional capacity. Therefore, bladder smooth muscle must stretch and rearrange itself to allow an increase in bladder volume without pressure rise. Although a number of mechanisms are likely to be important in this response, we have recently described stretch-dependent K+ (SDK) channels in colonic smooth muscle that could hyperpolarize membrane potential and prevent activation of contraction. Recently we found SDK channels in urinary bladder. This finding stimulated the following hypotheses: 1) Functional SDK channels are present in the murine bladder and encoded by members of the two-pore family of K+ channels. 2) SDK channels mediate responses to nitric oxide. 3) Hypertrophy of the mouse bladder is accompanied by an increase in the number of functional SDK channels and may affect the performance of the detrusor muscle in these animals. 4) SDK channels are activated and inhibited by interactions with the actin cytoskeleton. In order to test these hypotheses we will use electrophysiological methods including patch-clamp studies of single SDK channels and measurement of membrane potential in intact bladder smooth muscle to investigate the role of the SDK channels in bladder function. In addition, we will use RT-PCR, immunoblot, and immunohistochemical methods to localize TREK-1 channel subunits in bladder. We will develop antisense methods and TREK- 1 knockout mouse to reduce expression or function of SDK channels in smooth muscle myocytes and in intact bladder. We will then characterize the function of these preparations to test hypotheses 1 and 2. In addition, we will implement an experimental model of bladder outlet obstruction and monitor changes in SDK channel expression (RT-PCR, immunoblot, and immunohistochemical methods) and function (electrophysiological and mechanical measurements). We will characterize the interactions between SDK channels and the actin cytoskeleton using pharmacological and antisense methods to disrupt specific interactions and examining the effects on SDK channel function. The specific actin-binding proteins associated with TREK-1 will be identified with assistance from the Cell to Proteomics Interface Core. In conclusion, the characterization of SDK channels channels in bladder will be important to understand the physiological filling mechanisms and the pathological distension.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018751-04
Application #
7382020
Study Section
Special Emphasis Panel (ZRR1-RI-3 (01))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
4
Fiscal Year
2006
Total Cost
$233,102
Indirect Cost
Name
University of Nevada Reno
Department
Physiology
Type
Schools of Medicine
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Heredia, Dante J; Feng, Cheng-Yuan; Agarwal, Andrea et al. (2018) Postnatal Restriction of Activity-Induced Ca2+ Responses to Schwann Cells at the Neuromuscular Junction Are Caused by the Proximo-Distal Loss of Axonal Synaptic Vesicles during Development. J Neurosci 38:8650-8665
Brijs, Jeroen; Hennig, Grant W; Gräns, Albin et al. (2017) Exposure to seawater increases intestinal motility in euryhaline rainbow trout (Oncorhynchus mykiss). J Exp Biol 220:2397-2408
Heredia, Dante J; Schubert, Douglas; Maligireddy, Siddhardha et al. (2016) A Novel Striated Muscle-Specific Myosin-Blocking Drug for the Study of Neuromuscular Physiology. Front Cell Neurosci 10:276
Schuster, Andrew; Skinner, Michael K; Yan, Wei (2016) Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environ Epigenet 2:
Scurry, Alexandra N; Heredia, Dante J; Feng, Cheng-Yuan et al. (2016) Structural and Functional Abnormalities of the Neuromuscular Junction in the Trembler-J Homozygote Mouse Model of Congenital Hypomyelinating Neuropathy. J Neuropathol Exp Neurol 75:334-46
Bao, Jianqiang; Tang, Chong; Yuan, Shuiqiao et al. (2015) UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome. Development 142:352-62
Park, C; Lee, M Y; Slivano, O J et al. (2015) Loss of serum response factor induces microRNA-mediated apoptosis in intestinal smooth muscle cells. Cell Death Dis 6:e2011
Winbush, Ari; Gruner, Matthew; Hennig, Grant W et al. (2015) Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population. J Neurosci Methods 249:66-74
Lee, Moon Young; Park, Chanjae; Berent, Robyn M et al. (2015) Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes. PLoS One 10:e0133751
Yuan, Shuiqiao; Stratton, Clifford J; Bao, Jianqiang et al. (2015) Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc Natl Acad Sci U S A 112:E430-9

Showing the most recent 10 out of 94 publications