This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Cerebral Palsy (CP) is the most common disabling neurological disease in children. The incidence rate of CP is rising in developed countries. Our long-term goal is to understand the mechanism leading to the motor system dysfunction in children with CP, as the disease affects almost exclusively the motor system of affected children. Patients with adult-type diseases such as stroke share common features with CP and are known to have abnormalities at their neuromuscular junction (NMJ). Encouraged by these findings in adults coupled with the need to understand the NMJs in CP, which are critical for motor system function, we formulated the following central hypothesis: Children with CP have inherent abnormalities present in their NMJs that contribute to the motor-system dysfunction seen during their lifetimes. In order to test this hypothesis we developed three specific aims: 1) To examine and describe the neuromuscular junction in children with cerebral palsy with respect to their structure and function; 2) To explore associations that exist between the abnormalities evident in the neuromuscular junction and clinical features of cerebral palsy, most notably, spasticity; 3) To study animal models of cerebral palsy to better enable us to understand the structural and functional characteristics of the peripheral nervous system in cerebral palsy.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR020173-03
Application #
7382173
Study Section
Special Emphasis Panel (ZRR1-RI-5 (02))
Project Start
2006-08-01
Project End
2007-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
3
Fiscal Year
2006
Total Cost
$83,724
Indirect Cost
Name
Alfred I. Du Pont Hosp for Children
Department
Type
DUNS #
038004941
City
Wilmington
State
DE
Country
United States
Zip Code
19803
Nagao, Kyoko; Morlet, Thierry; Haley, Elizabeth et al. (2018) Neurophysiology of hearing in patients with mucopolysaccharidosis type IV. Mol Genet Metab 123:472-478
Brescia, AnneMarie C; Simonds, Megan M; McCahan, Suzanne M et al. (2018) Prior to extension, Transcriptomes of fibroblast-like Synoviocytes from extended and Polyarticular juvenile idiopathic arthritis are indistinguishable. Pediatr Rheumatol Online J 16:3
Brescia, AnneMarie C; Simonds, Megan M; Sullivan, Kathleen E et al. (2017) Secretion of pro-inflammatory cytokines and chemokines and loss of regulatory signals by fibroblast-like synoviocytes in juvenile idiopathic arthritis. Proteomics Clin Appl 11:
Kubaski, Francyne; Brusius-Facchin, Ana Carolina; Mason, Robert W et al. (2017) Elevation of glycosaminoglycans in the amniotic fluid of a fetus with mucopolysaccharidosis VII. Prenat Diagn 37:435-439
Khan, Shaukat; Alméciga-Díaz, Carlos J; Sawamoto, Kazuki et al. (2017) Mucopolysaccharidosis IVA and glycosaminoglycans. Mol Genet Metab 120:78-95
Kubaski, Francyne; Suzuki, Yasuyuki; Orii, Kenji et al. (2017) Glycosaminoglycan levels in dried blood spots of patients with mucopolysaccharidoses and mucolipidoses. Mol Genet Metab 120:247-254
Yabe, Hiromasa; Tanaka, Akemi; Chinen, Yasutsugu et al. (2016) Hematopoietic stem cell transplantation for Morquio A syndrome. Mol Genet Metab 117:84-94
Robbins, Alan K; Mateson, Abigail B; Khandha, Ashutosh et al. (2016) Fetal Rat Gubernaculum Mesenchymal Cells Adopt Myogenic and Myofibroblast-Like Phenotypes. J Urol 196:270-8
Koenighofer, M; Hung, C Y; McCauley, J L et al. (2016) Mutations in RIT1 cause Noonan syndrome - additional functional evidence and expanding the clinical phenotype. Clin Genet 89:359-66
Tomatsu, Shunji; Azario, Isabella; Sawamoto, Kazuki et al. (2016) Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better? J Inherit Metab Dis 39:189-202

Showing the most recent 10 out of 161 publications