This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. OVERVIEW ***Please note the Tables and Figures mentioned below would not reproduce in this format. Please see attachments sent with the paper copy.*** Core B activities during the reporting period included both +Support for 12 COBRE investigators quantifying genome-wide expression +Participation in development of a plan to bring massively parallel (next generation) sequencing technology to COBRE investigators. SUPPORT FOR GENOME-WIDE EXPRESSION EXPERIMENTS Utilization Services involving experiment design, genome-wide transcription measurements, or bioinformatics analysis were associated with 9 investigators (13 experiments, 189 microarrays). Services involving preliminary discussions or systems biology software supported an additional three investigators (Table 2). Productivity One publication resulted from earlier support (Rincon and coworkers, """"""""The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells."""""""" J Exp Med. 2009 206:69-78), one manuscript is being revised for resubmission (Matrajt and coworkers, """"""""Genome-wide expression reveals Toxoplamsa gondii bradyzoite differentiation mutants are also impaired with respect to switching into a novel extracellular tachyzoite stage."""""""", PLoS One), and three manuscripts are at the stage of manuscript preparation (2 from the Teuscher laboratory and one from the Budd laboratory). EMERGING TECHNOLOGIES: Massively parallel sequencing Tim Hunter of Core B continues to play a central role in efforts to bring next generation sequencing to UVM. He participated in development of an application entitled """"""""Next Generation DNA Sequencing Technology for Vermont """""""" (Nicholas Heintz, PI) for earmark funding that was submitted to Senator Leahy's office from the Dean's Office in the UVM College of Medicine. Tim Hunter and Jeff Bond worked to integrate proposed Core B services related to massively parallel sequencing with services supported by the Dean's Office of the College of Medicine and the Vermont Genetics Network. Briefly (Figure 1), the earmark application proposes support for 1FTE involving library construction and sequencing, to be supervised by Tim Hunter, as well as a bioinformatics faculty member and 1 FTE for bioinformatics analysis. The Vermont Genetics Network will provide services related to data storage and preprocessing (Jim Vincent and 1 FTE TBN) as well as 1 FTE for downstream analysis. Figure 1. Development of a plan for bringing massively parallel sequencing to the VCII. Three organizational units, the VCII (Tim Hunter and Jeff Bond), the College of Medicine (COM), and the Vermont Genetics Network (VGN), are working together to provide laboratory services, informatics, and statistical services supporting experiments based on massively parallel sequencing ***Please see attachment for tables and figures: would not reproduce here.***

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR021905-05
Application #
8167728
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
5
Fiscal Year
2010
Total Cost
$20,649
Indirect Cost
Name
University of Vermont & St Agric College
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
King, Benjamin R; Samacoits, Aubin; Eisenhauer, Philip L et al. (2018) Visualization of Arenavirus RNA Species in Individual Cells by Single-Molecule Fluorescence In Situ Hybridization Suggests a Model of Cyclical Infection and Clearance during Persistence. J Virol 92:
Ziegler, Christopher M; Bruce, Emily A; Kelly, Jamie A et al. (2018) The use of novel epitope-tagged arenaviruses reveals that Rab5c-positive endosomal membranes are targeted by the LCMV matrix protein. J Gen Virol 99:187-193
Hasan, Muhammad M; Teixeira, Jose E; Huston, Christopher D (2018) Invadosome-Mediated Human Extracellular Matrix Degradation by Entamoeba histolytica. Infect Immun 86:
King, Benjamin R; Hershkowitz, Dylan; Eisenhauer, Philip L et al. (2017) A Map of the Arenavirus Nucleoprotein-Host Protein Interactome Reveals that Junín Virus Selectively Impairs the Antiviral Activity of Double-Stranded RNA-Activated Protein Kinase (PKR). J Virol 91:
Bonney, Elizabeth A; Howard, Ann; Krebs, Kendall et al. (2017) Impact of Immune Deficiency on Remodeling of Maternal Resistance Vasculature 4 Weeks Postpartum in Mice. Reprod Sci 24:514-525
King, Benjamin R; Kellner, Samuel; Eisenhauer, Philip L et al. (2017) Visualization of the lymphocytic choriomeningitis mammarenavirus (LCMV) genome reveals the early endosome as a possible site for genome replication and viral particle pre-assembly. J Gen Virol :
Bonney, Elizabeth A (2017) Alternative theories: Pregnancy and immune tolerance. J Reprod Immunol 123:65-71
Ziegler, Christopher M; Eisenhauer, Philip; Kelly, Jamie A et al. (2017) A proteomic survey of Junín virus interactions with human proteins reveals host factors required for arenavirus replication. J Virol :
Bonney, Elizabeth A; Krebs, Kendall; Saade, George et al. (2016) Differential senescence in feto-maternal tissues during mouse pregnancy. Placenta 43:26-34
Sateriale, Adam; Miller, Peter; Huston, Christopher D (2016) Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells. Infect Immun 84:1045-1053

Showing the most recent 10 out of 143 publications