This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Objectives: The major aims of the Chemistry Core of the Center of Research Excellence in Natural Products Neuroscience are to isolate, characterize and optimize the active principles of plants, bacteria, fungi, and marine organisms with potential nervous system activity. This core will be responsible for the elucidation of structures and provide material for in vitro and in vivo pharmacological studies in order to develop new psychotropic drug candidates and research tools to study nervous system function. The Chemistry Core will also have an advisory role for individual projects that require expertise in the isolation, structure elucidation and lead optimization of natural products based drug leads and prototypes. The expertise of the Chemistry Core includes: (a) isolation and purification of active secondary metabolites on a mg to kg scale, (b) structure elucidation of isolated active principles, (c) re-isolation or synthesis of larger quantities of active components for in vitro and in vivo studies, and (d) semi-synthetic modification of lead compounds to generate SAR data and to further develop drug candidates.
Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora et al. (2015) Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia. J Ethnopharmacol 165:191-7 |
Maddineni, Sindhuri; Battu, Sunil Kumar; Morott, Joe et al. (2015) Influence of process and formulation parameters on dissolution and stability characteristics of Kollidon® VA 64 hot-melt extrudates. AAPS PharmSciTech 16:444-54 |
Morgan, J Brian; Liu, Yang; Coothankandaswamy, Veena et al. (2015) Kalkitoxin inhibits angiogenesis, disrupts cellular hypoxic signaling, and blocks mitochondrial electron transport in tumor cells. Mar Drugs 13:1552-68 |
Mohamed, Shaymaa M M; Elokely, Khaled M; Bachkeet, Enaam Y et al. (2015) New Glycosides and Trypanocidal Metabolites from Vangueria edulis. Nat Prod Commun 10:1897-900 |
Radwan, Mohamed M; ElSohly, Mahmoud A; El-Alfy, Abir T et al. (2015) Isolation and Pharmacological Evaluation of Minor Cannabinoids from High-Potency Cannabis sativa. J Nat Prod 78:1271-6 |
Tabrizian, Tahmineh; Hataway, Felicia; Murray, David et al. (2015) Prolylcarboxypeptidase gene expression in the heart and kidney: Effects of obesity and diabetes. Cardiovasc Hematol Agents Med Chem 13:113-23 |
Ahmed, Safwat A; Ross, Samir A; Slade, Desmond et al. (2015) Minor oxygenated cannabinoids from high potency Cannabis sativa L. Phytochemistry 117:194-9 |
Malak, Lourin G; Ibrahim, Mohamed Ali; Bishay, Daoud W et al. (2014) Antileishmanial metabolites from Geosmithia langdonii. J Nat Prod 77:1987-91 |
Tarawneh, Amer H; León, Francisco; Ibrahim, Mohammed A et al. (2014) Flavanones from Miconia prasina. Phytochem Lett 7:130-132 |
Chatterjee, Arindam; Cutler, Stephen J; Doerksen, Robert J et al. (2014) Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Bioorg Med Chem 22:6409-21 |
Showing the most recent 10 out of 134 publications