This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The in vitro Pharmacology Core has assays for GTP?S and CB1 cannabinoid receptors and is working on the development of assays for mu, delta and kappa opioid receptors. Also in development are assays for CB2, and OFQ receptors and Ca2+ signaling. Additional receptor, ion channel, and transporter binding assays are in the planning stage. This cores functions involve the use of state of the art technologies as well as time-tested laboratory methodologies. Using multi-label reader technologies and radioactive binding techniques, the core is set up to rapidly assess specific activities of compounds and extracts held in the repositories (Sourcing, Acquisition and Database Core) at the University of Mississippi National Center for Natural Products Research and of compounds synthesized by the Chemistry Core. These studies can be performed on tissues harvested from animals or from cultured cells. Mechanistic studies into the actions of extracts and their compounds can be assessed using biochemical kinetic analyses as well as cellular electrophysiology and imaging techniques, which will be added in the 3rd year. This exploratory ability is accomplished through the cores four functional components;cell culture facility, functional testing facility, biochemistry, receptor pharmacology and histology facility, and the soon to be added electrophysiology and imaging facility.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR021929-04
Application #
7959633
Study Section
Special Emphasis Panel (ZRR1-RI-8 (02))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
4
Fiscal Year
2009
Total Cost
$197,278
Indirect Cost
Name
University of Mississippi
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
067713560
City
University
State
MS
Country
United States
Zip Code
38677
Mohamed, Shaymaa M M; Elokely, Khaled M; Bachkeet, Enaam Y et al. (2015) New Glycosides and Trypanocidal Metabolites from Vangueria edulis. Nat Prod Commun 10:1897-900
Radwan, Mohamed M; ElSohly, Mahmoud A; El-Alfy, Abir T et al. (2015) Isolation and Pharmacological Evaluation of Minor Cannabinoids from High-Potency Cannabis sativa. J Nat Prod 78:1271-6
Tabrizian, Tahmineh; Hataway, Felicia; Murray, David et al. (2015) Prolylcarboxypeptidase gene expression in the heart and kidney: Effects of obesity and diabetes. Cardiovasc Hematol Agents Med Chem 13:113-23
Ahmed, Safwat A; Ross, Samir A; Slade, Desmond et al. (2015) Minor oxygenated cannabinoids from high potency Cannabis sativa L. Phytochemistry 117:194-9
Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora et al. (2015) Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia. J Ethnopharmacol 165:191-7
Maddineni, Sindhuri; Battu, Sunil Kumar; Morott, Joe et al. (2015) Influence of process and formulation parameters on dissolution and stability characteristics of Kollidon® VA 64 hot-melt extrudates. AAPS PharmSciTech 16:444-54
Morgan, J Brian; Liu, Yang; Coothankandaswamy, Veena et al. (2015) Kalkitoxin inhibits angiogenesis, disrupts cellular hypoxic signaling, and blocks mitochondrial electron transport in tumor cells. Mar Drugs 13:1552-68
Malak, Lourin G; Ibrahim, Mohamed Ali; Bishay, Daoud W et al. (2014) Antileishmanial metabolites from Geosmithia langdonii. J Nat Prod 77:1987-91
Tarawneh, Amer H; León, Francisco; Ibrahim, Mohammed A et al. (2014) Flavanones from Miconia prasina. Phytochem Lett 7:130-132
Chatterjee, Arindam; Cutler, Stephen J; Doerksen, Robert J et al. (2014) Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Bioorg Med Chem 22:6409-21

Showing the most recent 10 out of 134 publications