This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. In year 2 of Project 2 we have continued to collect data from our auditory/visual multisensory integration paradigm in order to better understand how unisensory deficits may impact higher cognitive functioning by testing the effects on simple multisensory integration responses in patients with schizophrenia (SP) relative to healthy controls (HC). Although data collection was delayed in the first year due to the installation of the new Elekta Neuromag MEG machine, we have made significant progress in catching up with data collection. The current status of data collection for Project 2 is outlined in Table 1. The MEG machine was installed at the end of July and data collection began for Project 2 at the beginning of Oct. 2009. This led to an imbalance in the numbers between the fMRI and MEG/EEG data collection. We were able to collect BioSemi EEG data on 6 of the participants who were not recruited back for the MEG/EEG session. Total 80 70 51 51 23 I have a manuscript under revision reporting normative data from the experimental AV integration paradigm.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR021938-03
Application #
8167724
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
3
Fiscal Year
2010
Total Cost
$233,761
Indirect Cost
Name
The Mind Research Network
Department
Type
DUNS #
098640696
City
Albuquerque
State
NM
Country
United States
Zip Code
87106
Edgar, J C; Fisk 4th, Charles L; Chen, Yu-Han et al. (2018) Identifying auditory cortex encoding abnormalities in schizophrenia: The utility of low-frequency versus 40 Hz steady-state measures. Psychophysiology 55:e13074
Thoma, Robert J; Haghani Tehrani, Poone; Turner, Jessica A et al. (2018) Neuropsychological analysis of auditory verbal hallucinations. Schizophr Res 192:459-460
Sanfratello, Lori; Aine, Cheryl; Stephen, Julia (2018) Neuroimaging investigations of dorsal stream processing and effects of stimulus synchrony in schizophrenia. Psychiatry Res Neuroimaging :
Wu, Lei; Caprihan, Arvind; Bustillo, Juan et al. (2018) An approach to directly link ICA and seed-based functional connectivity: Application to schizophrenia. Neuroimage 179:448-470
Mennigen, Eva; Miller, Robyn L; Rashid, Barnaly et al. (2018) Reduced higher-dimensional resting state fMRI dynamism in clinical high-risk individuals for schizophrenia identified by meta-state analysis. Schizophr Res 201:217-223
Kong, Xiang-Zhen; Mathias, Samuel R; Guadalupe, Tulio et al. (2018) Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci U S A 115:E5154-E5163
Faghiri, Ashkan; Stephen, Julia M; Wang, Yu-Ping et al. (2018) Changing brain connectivity dynamics: From early childhood to adulthood. Hum Brain Mapp 39:1108-1117
Orban, Pierre; Dansereau, Christian; Desbois, Laurence et al. (2018) Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity. Schizophr Res 192:167-171
Du, Yuhui; Fu, Zening; Calhoun, Vince D (2018) Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging. Front Neurosci 12:525
Trapp, Cameron; Vakamudi, Kishore; Posse, Stefan (2018) On the detection of high frequency correlations in resting state fMRI. Neuroimage 164:202-213

Showing the most recent 10 out of 151 publications