This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The superfamily of UDP-glucuronosyl transferase (UGT) enzymes are critical for the metabolic clearance of most biological substances including chemicals, hormones, dietary drugs and environmental chemicals. They regulate the levels of these compounds by degrading them. We have previously demonstrated that UGTs play an important role in human reproduction. During the first trimester of pregnancy, total UGT activity in the human placenta is equal to or greater than that found in the liver of adults. This incredibly high rate of activity in the placenta suggests that some isoforms in the superfamily play key roles in pregnancy and human development. Two sub-families exist: UGT1A and UGT2B and we have previously demonstrated that UGT2B isoforms are present in relatively low levels and static. On the other hand, UGT1A levels are higher and dynamic during pregnancy. Taken together, these facts strongly support that UGT enzymes, especially those in the UGTA1 subfamily, are important in pregnancy and fetal development. However, their precise role in this process remains unclear. The major goal of this Project is to understand the role of UGT enzymes in normal pregnancy. This will be accomplished by testing UGT levels in normal and abnormal human placentas. We will also determine how UGT alters steroid metabolism in assisted reproductive technologies using the mouse as a model.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR024206-04
Application #
8360323
Study Section
Special Emphasis Panel (ZRR1-RI-2 (01))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
4
Fiscal Year
2011
Total Cost
$220,727
Indirect Cost
Name
University of Hawaii
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
965088057
City
Honolulu
State
HI
Country
United States
Zip Code
96822
Goh, William A; Zalud, Ivica (2016) Placenta accreta: diagnosis, management and the molecular biology of the morbidly adherent placenta. J Matern Fetal Neonatal Med 29:1795-800
Feng, Nannan; Ching, Travers; Wang, Yu et al. (2016) Analysis of Microarray Data on Gene Expression and Methylation to Identify Long Non-coding RNAs in Non-small Cell Lung Cancer. Sci Rep 6:37233
Rose, Aaron H; Hoffmann, FuKun W; Hara, Jared H et al. (2015) Adjuvants may reduce in vivo transfection levels for DNA vaccination in mice leading to reduced antigen-specific CD8+ T cell responses. Hum Vaccin Immunother 11:2305-11
Sato, Brittany L; Ward, Monika A; Astern, Joshua M et al. (2015) Validation of murine and human placental explant cultures for use in sex steroid and phase II conjugation toxicology studies. Toxicol In Vitro 29:103-12
Riches, Zoe; Abanda, Ngu; Collier, Abby C (2015) BCRP protein levels do not differ regionally in adult human livers, but decline in the elderly. Chem Biol Interact 242:203-10
Collier, Abby C; Thévenon, Audrey D; Goh, William et al. (2015) Placental profiling of UGT1A enzyme expression and activity and interactions with preeclampsia at term. Eur J Drug Metab Pharmacokinet 40:471-80
Li, Zicong; Zeng, Fang; Meng, Fanming et al. (2014) Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biol Reprod 90:93
Vernet, Nadège; Mahadevaiah, Shantha K; Yamauchi, Yasuhiro et al. (2014) Mouse Y-linked Zfy1 and Zfy2 are expressed during the male-specific interphase between meiosis I and meiosis II and promote the 2nd meiotic division. PLoS Genet 10:e1004444
Bertino, Pietro; Urschitz, Johann; Hoffmann, Fukun W et al. (2014) Vaccination with a piggyBac plasmid with transgene integration potential leads to sustained antigen expression and CD8(+) T cell responses. Vaccine 32:1670-7
Dewitt, J; Ochoa, V; Urschitz, J et al. (2014) Constitutively active TrkB confers an aggressive transformed phenotype to a neural crest-derived cell line. Oncogene 33:977-85

Showing the most recent 10 out of 50 publications