The Neuropathology Core is central tot he efforts of the ADCC. In the core the brains from patients, identified as probable AD and studied in vivo by the Clinical Core, are examined neuropathologically to provide a definitive diagnosis of the causes(s) of the clinical syndrome. Brains of similarly identified and studied normal elderly controls are also examined for comparison purposes. The core includes a Morphometry Component at IBR which provides quantitative neuropathologic data for correlation with antemortem clinical neuroimaging information. The core also serves as the central clearing house for the storage and distribution of tissue in appropriate states (fixed, fresh, frozen) to research laboratories in the center. Finally, the core collaborates with other cores and projects of the center, supplying neuroanatomical as well as neuropathological expertise and contributing to the overall centralized database of the center.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG008051-10
Application #
6295495
Study Section
Project Start
1999-07-01
Project End
2000-04-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
10
Fiscal Year
1999
Total Cost
Indirect Cost
Name
New York University
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10016
Ramos-Cejudo, Jaime; Wisniewski, Thomas; Marmar, Charles et al. (2018) Traumatic Brain Injury and Alzheimer's Disease: The Cerebrovascular Link. EBioMedicine 28:21-30
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Jeanneteau, Freddy; Barrère, Christian; Vos, Mariska et al. (2018) The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in Prefrontal Cortex. J Neurosci 38:1335-1350
Drummond, Eleanor; Nayak, Shruti; Pires, Geoffrey et al. (2018) Isolation of Amyloid Plaques and Neurofibrillary Tangles from Archived Alzheimer's Disease Tissue Using Laser-Capture Microdissection for Downstream Proteomics. Methods Mol Biol 1723:319-334
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Chen, Jingyun; Li, Yi; Pirraglia, Elizabeth et al. (2018) Quantitative evaluation of tau PET tracers 18F-THK5351 and 18F-AV-1451 in Alzheimer's disease with standardized uptake value peak-alignment (SUVP) normalization. Eur J Nucl Med Mol Imaging 45:1596-1604
Hadjichrysanthou, Christoforos; McRae-McKee, Kevin; Evans, Stephanie et al. (2018) Potential Factors Associated with Cognitive Improvement of Individuals Diagnosed with Mild Cognitive Impairment or Dementia in Longitudinal Studies. J Alzheimers Dis 66:587-600
de Leon, Mony J; Li, Yi; Rusinek, Henry (2018) Reply: Cerebrospinal Fluid, Hyposmia, and Dementia in Alzheimer Disease: Insights from Dynamic PET and a Hypothesis. J Nucl Med 59:718-719
Hanfelt, John J; Peng, Limin; Goldstein, Felicia C et al. (2018) Latent classes of mild cognitive impairment are associated with clinical outcomes and neuropathology: Analysis of data from the National Alzheimer's Coordinating Center. Neurobiol Dis 117:62-71
Burke, Shanna L; Hu, Tianyan; Fava, Nicole M et al. (2018) Sex differences in the development of mild cognitive impairment and probable Alzheimer's disease as predicted by hippocampal volume or white matter hyperintensities. J Women Aging :1-25

Showing the most recent 10 out of 604 publications