Cognition in aging and neurodegenerative diseases reflects the net effect of multiple pathological, neuroplastic, and brain reserve processes. Penn's P30 Alzheimer's Disease Core Center (ADCC) is the foundation for many interactive clinical and basic research programs on AD and related disorders at Penn and beyond that investigate these processes. The Clinical Core's role is to support and promote this research to better characterize mechanisms of disease and resilience in patients and controls, to characterize the ways in which pathology clinically manifests in people over time, and to investigate ways to prevent or treat disease in order to maximize daily function and quality of life of older adults. The Clinical Core's base of operations is the Penn Memory Center (PMC), a multidepartmental clinical and clinical research outpatient center of the University of Pennsylvania Health System, where many of our research participants are recruited. We also have a longstanding research interest and commitment to an underserved Latino minority community through satellite recruitment in primary care practices in North Philadelphia and with the Education Core, we are expanding our outreach in the African American communities of West Philadelphia. The Clinical Core characterizes a longitudinal cohort of people with normal and abnormal brain aging who participate in our ADCC and its affiliated research programs by: a) applying standardized rating scales to measure past and current medical, cognitive, neurological, behavioral, and functional status, b) conducting and monitoring the clinical utility of neuroimaging studies and molecular-biochemical biomarkers for diagnosis, prognosis, and outcome c) establishing reliable and accurate consensus diagnosis, d) meticulously collecting and handling biospecimens, and e) recruiting and enrolling into affiliated research studies. The Clinical Core is the nexus for almost all of the clinical research conducted on AD and related disorders at Penn. It performs critical functions to support the mission of the Penn ADCC to increase the quality and quantity of AD-relevant research at Penn and beyond. Accordingly, it will continue to implement the following three aims:
Aim 1 : To identify, assess, and longitudinally evaluate patients from the earliest symptomatic stage of neurodegenerative dementia as well as individuals with normal cognition, gathering clinical data compliant with the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS), in addition to neuroimaging data, and biological material, including cerebrospinal fluid (CSF), blood, DNA and brain tissue.
Aim 2 : To facilitate the participation of individuals evaluated by the Clinical Core in collaborative research studies, including those of the Alzheimer's Disease Cooperative Study (ADCS) and the Alzheimer's Disease Neuroimaging Initiative (ADNI).
Aim 3 : To integrate the collection and management of data and biological samples with the other cores in a manner that facilitates collaborative studies and sample sharing among the ADCs and other qualified investigators.

Public Health Relevance

AD and other related dementias are among the most common, feared, and costly conditions in later life. The Clinical Core of the Penn ADCC plays a central role in the assessment, diagnosis, research recruitment and longitudinal management of older adults with cognitive decline as well as their comparison to research participants with successful cognitive aging. Through a better understanding of healthy and diseased cognitive aging, we seek to improve the functioning and quality of life of older adults.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG010124-23
Application #
8501183
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
23
Fiscal Year
2013
Total Cost
$682,074
Indirect Cost
$255,778
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Hanfelt, John J; Peng, Limin; Goldstein, Felicia C et al. (2018) Latent classes of mild cognitive impairment are associated with clinical outcomes and neuropathology: Analysis of data from the National Alzheimer's Coordinating Center. Neurobiol Dis 117:62-71
Wang, Hua; Stewart, Tessandra; Toledo, Jon B et al. (2018) A Longitudinal Study of Total and Phosphorylated ?-Synuclein with Other Biomarkers in Cerebrospinal Fluid of Alzheimer's Disease and Mild Cognitive Impairment. J Alzheimers Dis 61:1541-1553
Nativio, Raffaella; Donahue, Greg; Berson, Amit et al. (2018) Publisher Correction: Dysregulation of the epigenetic landscape of normal aging in Alzheimer's disease. Nat Neurosci 21:1018
Zhou, Zilu; Wang, Weixin; Wang, Li-San et al. (2018) Integrative DNA copy number detection and genotyping from sequencing and array-based platforms. Bioinformatics 34:2349-2355
Adler, Daniel H; Wisse, Laura E M; Ittyerah, Ranjit et al. (2018) Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology. Proc Natl Acad Sci U S A 115:4252-4257
Vickers, Kayci L; Breslin, Kathleen; Roalf, David R et al. (2018) Older Adult Normative Data for the Sniffin' Sticks Odor Identification Test. Arch Clin Neuropsychol :
Walsh, Ryan R; Krismer, Florian; Galpern, Wendy R et al. (2018) Recommendations of the Global Multiple System Atrophy Research Roadmap Meeting. Neurology 90:74-82
Blue, Elizabeth E; Bis, Joshua C; Dorschner, Michael O et al. (2018) Genetic Variation in Genes Underlying Diverse Dementias May Explain a Small Proportion of Cases in the Alzheimer's Disease Sequencing Project. Dement Geriatr Cogn Disord 45:1-17
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Trombetta, Bianca A; Carlyle, Becky C; Koenig, Aaron M et al. (2018) The technical reliability and biotemporal stability of cerebrospinal fluid biomarkers for profiling multiple pathophysiologies in Alzheimer's disease. PLoS One 13:e0193707

Showing the most recent 10 out of 720 publications