Neurodegenerative disorders are characterized by abundant protein aggregates in brain and spinal cord (CNS) that are the defining neuropathology (NP) of these disorders as exemplified by senile plaques (SPs) and neurofibrillary tangles (NFTs), the diagnostic signatures of Alzheimer's disease (AD). However, AD is associated with Lewy bodies (LBs) and TDP-43 pathologies in >50% of patients while mild cognitive impairment (MCI) often shows abundant SPs and NFTs at autopsy consistent with AD. Further, the NP in ~25% or more of frontotemporal lobar degeneration (FTLD) patients is AD, while the remaining FTLD cases are non-AD tauopathies (FTLD-Tau), TDP-43 proteinopathy (FTLD-TDP) or, rarely, FUS proteinopathy (FTLD-FUS). Thus, a definitive diagnosis of AD and related dementias is established definitively only by postmortem NP examination, and an accurate NP diagnosis is essential for informative clinicopathologic correlations to elucidate molecular mechanisms of MCI, AD, FTLD and other dementias such as Parkinson's disease with dementia and dementia with LBs. Since multiple genetic factors contribute to the risk for AD and biomarkers signal disease onset/progression, DNA and biofluid banking is critical for genetic and biomarker studies. Hence, the University of Pennsylvania (Penn) AD Core Center (ADCC) characterizes and banks CNS tissues, DNA and biofluids from well-characterized patients followed in Clinical Core B with AD and related disorders as well as normal control subjects. This is essential for research conducted in ADCC Pilots and other grants that utilize Penn ADCC resources. Accordingly, Core D is re-named the Neuropathology, Genetics and Biomarker Core to reflect the full scope of its current activities. Core D also distributes tissue, DNA and biofluids to investigators at and beyond Penn for research. Finally, Core D works with the Data Management and Statistics Core C to enter all information into a database, maintain data confidentiality, and provide these data to NACC. In summary, Core D performs critical functions to support the mission of the Penn ADCC.

Public Health Relevance

Core D is highly relevant to the continued success of the Penn ADCC because it provides critical diagnostic, biosample banking and expertise in NP, genetics and biomarker studies that support the mission of the Penn ADCC which challenges/re-defines current clinical practice paradigms and research on AD and related disorders as well as MCI and normal aging by utilizing novel concepts and approaches to achieve the goals ofthis ADCC including integration of genetics and biomarkers with postmortem pathologic analysis.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG010124-24
Application #
8688104
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
24
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Phillips, Jeffrey S; Da Re, Fulvio; Dratch, Laynie et al. (2018) Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer's disease. Neurobiol Aging 63:75-87
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Racine, Annie M; Brickhouse, Michael; Wolk, David A et al. (2018) The personalized Alzheimer's disease cortical thickness index predicts likely pathology and clinical progression in mild cognitive impairment. Alzheimers Dement (Amst) 10:301-310
Wilmoth, Kristin; LoBue, Christian; Clem, Matthew A et al. (2018) Consistency of traumatic brain injury reporting in older adults with and without cognitive impairment. Clin Neuropsychol 32:524-529
Kovacs, Gabor G; Xie, Sharon X; Robinson, John L et al. (2018) Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathol Commun 6:50
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Nativio, Raffaella; Donahue, Greg; Berson, Amit et al. (2018) Dysregulation of the epigenetic landscape of normal aging in Alzheimer's disease. Nat Neurosci 21:497-505
Roalf, David R; Rupert, Petra; Mechanic-Hamilton, Dawn et al. (2018) Quantitative assessment of finger tapping characteristics in mild cognitive impairment, Alzheimer's disease, and Parkinson's disease. J Neurol 265:1365-1375
Irwin, David J; Xie, Sharon X; Coughlin, David et al. (2018) CSF tau and ?-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders. Neurology 90:e1038-e1046

Showing the most recent 10 out of 720 publications