The overall objective of the Neuropathology Core of the University of Kentucky Alzheimer's Disease Center (UK-ADC) is to support research on normal brain aging, presymptomatic Alzheimer's disease (pAD), mild cognitive impairment (MCI), early and late AD, mixed dementia syndromes, and other dementing disorders. Autopsies will be performed by our Rapid Autopsy Team on longitudinally followed subjects from our Clinical Core. We will perform short post-mortem interval autopsies in relation to our clinical cohort, and we will maintain a high autopsy rate. This Core is optimally tailored to help address important research questions. The Core will provide brain tissue specimens, CSF and synaptosomes for investigators at UK, other ADCs, and outside investigators. The Core will also provide consensus conference determined diagnoses, quantitation of neurofibrillary tangles (NFT), neuritic plaques, and diffuse plaques from 8 brain regions, AB 1-40 and 1-42 quantitation, Braak staging, CERAD, and NIA-Reagan Institute staging on all autopsied cases to investigators. Since the brain bank has been operating continuously for over two decades with a strong track record, special care will be taken to ensure diagnostic excellence, consistency, and continuity. The Core will maintain a tissue bank of the above specimens and frozen serum, plasma, buffy coats and CSF from living patients. Special emphasis will be placed on defining the neuropathological findings in the brains of the oldest old (>85 years), and providing investigators with specimens from cognitively intact control subjects with no AB deposition and sparse tau pathology (successful cerebral aging) and also cognitively intact subjects with abundant plaques and neurofibrillary tangles. Providing these samples will contribute to clinical-pathological correlation studies and cutting-edge research that include sponsored studies related to AD genomics, oxidative stress, hippocampal sclerosis, dementia with Lewy bodies, amyloid precursor protein processing, Down syndrome, and neuroinflammation. Frequent consensus conferences will be held with the Clinical Core and Biostatistics Core to help define clinicalpathological diagnoses on all autopsied subjects. This Core is strongly integrated with other Cores of the UK-ADC, and exploits unique opportunities to conduct clinical-pathological correlative studies on longitudinally followed subjects. Through these methods we will better understand normal brain aging and the transition to dementia with the focused goal of contributing to therapeutic or preventive measures.

Public Health Relevance

The Neuropathology Core complements the other Cores of the University of Kentucky Alzheimer's Disease Center to provide extremely essential diagnoses and tissue samples that are required for many cutting-edge researchers at the University of Kentucky and elsewhere. We will build on our track record of excellence using innovative tools related to brain autopsies, neuropathological diagnoses, tissue banking, and state-of the-art clinical-pathological correlation.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
2P30AG028383-06
Application #
8293693
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (M2))
Project Start
Project End
Budget Start
2011-08-01
Budget End
2012-06-30
Support Year
6
Fiscal Year
2011
Total Cost
$172,374
Indirect Cost
Name
University of Kentucky
Department
Type
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Barnes, Josephine; Bartlett, Jonathan W; Wolk, David A et al. (2018) Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease. J Alzheimers Dis 64:631-642
Bradley-Whitman, Melissa A; Roberts, Kelly N; Abner, Erin L et al. (2018) A novel method for the rapid detection of post-translationally modified visinin-like protein 1 in rat models of brain injury. Brain Inj 32:363-380
Brown, Christopher A; Jiang, Yang; Smith, Charles D et al. (2018) Age and Alzheimer's pathology disrupt default mode network functioning via alterations in white matter microstructure but not hyperintensities. Cortex 104:58-74
Lin, Ming; Gong, Pinghua; Yang, Tao et al. (2018) Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment. Alzheimer Dis Assoc Disord 32:18-27
Burke, Shanna L; Maramaldi, Peter; Cadet, Tamara et al. (2018) Decreasing hazards of Alzheimer's disease with the use of antidepressants: mitigating the risk of depression and apolipoprotein E. Int J Geriatr Psychiatry 33:200-211
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307
Nelson, Peter T; Abner, Erin L; Patel, Ela et al. (2018) The Amygdala as a Locus of Pathologic Misfolding in Neurodegenerative Diseases. J Neuropathol Exp Neurol 77:2-20
Lanzillotta, Chiara; Tramutola, Antonella; Meier, Shelby et al. (2018) Early and Selective Activation and Subsequent Alterations to the Unfolded Protein Response in Down Syndrome Mouse Models. J Alzheimers Dis 62:347-359
Gal, Jozsef; Chen, Jing; Katsumata, Yuriko et al. (2018) Detergent Insoluble Proteins and Inclusion Body-Like Structures Immunoreactive for PRKDC/DNA-PK/DNA-PKcs, FTL, NNT, and AIFM1 in the Amygdala of Cognitively Impaired Elderly Persons. J Neuropathol Exp Neurol 77:21-39
Goetzl, Edward J; Abner, Erin L; Jicha, Gregory A et al. (2018) Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer's disease. FASEB J 32:888-893

Showing the most recent 10 out of 471 publications