The overall objective of the Neuropathology Core of the University of Kentucky Alzheimer's Disease Center (UK-ADC) is to support research on normal brain aging, presymptomatic Alzheimer's disease (pAD), mild cognitive impairment (MCI), early and late AD, mixed dementia syndromes, and other dementing disorders. Autopsies will be performed by our Rapid Autopsy Team on longitudinally followed subjects from our Clinical Core. We will perform short post-mortem interval autopsies in relation to our clinical cohort, and we will maintain a high autopsy rate. This Core is optimally tailored to help address important research questions. The Core will provide brain tissue specimens, CSF and synaptosomes for investigators at UK, other ADCs, and outside investigators. The Core will also provide consensus conference determined diagnoses, quantitation of neurofibrillary tangles (NFT), neuritic plaques, and diffuse plaques from 8 brain regions, AB 1-40 and 1-42 quantitation, Braak staging, CERAD, and NIA-Reagan Institute staging on all autopsied cases to investigators. Since the brain bank has been operating continuously for over two decades with a strong track record, special care will be taken to ensure diagnostic excellence, consistency, and continuity. The Core will maintain a tissue bank of the above specimens and frozen serum, plasma, buffy coats and CSF from living patients. Special emphasis will be placed on defining the neuropathological findings in the brains of the oldest old (>85 years), and providing investigators with specimens from cognitively intact control subjects with no AB deposition and sparse tau pathology (successful cerebral aging) and also cognitively intact subjects with abundant plaques and neurofibrillary tangles. Providing these samples will contribute to clinical-pathological correlation studies and cutting-edge research that include sponsored studies related to AD genomics, oxidative stress, hippocampal sclerosis, dementia with Lewy bodies, amyloid precursor protein processing, Down syndrome, and neuroinflammation. Frequent consensus conferences will be held with the Clinical Core and Biostatistics Core to help define clinicalpathological diagnoses on all autopsied subjects. This Core is strongly integrated with other Cores of the UK-ADC, and exploits unique opportunities to conduct clinical-pathological correlative studies on longitudinally followed subjects. Through these methods we will better understand normal brain aging and the transition to dementia with the focused goal of contributing to therapeutic or preventive measures.

Public Health Relevance

The Neuropathology Core complements the other Cores of the University of Kentucky Alzheimer's Disease Center to provide extremely essential diagnoses and tissue samples that are required for many cutting-edge researchers at the University of Kentucky and elsewhere. We will build on our track record of excellence using innovative tools related to brain autopsies, neuropathological diagnoses, tissue banking, and state-of the-art clinical-pathological correlation.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG028383-08
Application #
8491999
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
8
Fiscal Year
2013
Total Cost
$160,799
Indirect Cost
$52,517
Name
University of Kentucky
Department
Type
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
Agogo, George O; Ramsey, Christine M; Gnjidic, Danijela et al. (2018) Longitudinal associations between different dementia diagnoses and medication use jointly accounting for dropout. Int Psychogeriatr 30:1477-1487
Pruzin, J J; Nelson, P T; Abner, E L et al. (2018) Review: Relationship of type 2 diabetes to human brain pathology. Neuropathol Appl Neurobiol 44:347-362
Besser, Lilah; Kukull, Walter; Knopman, David S et al. (2018) Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer Dis Assoc Disord 32:351-358
Nelson, Peter T; Wang, Wang-Xia; Janse, Sarah A et al. (2018) MicroRNA expression patterns in human anterior cingulate and motor cortex: A study of dementia with Lewy bodies cases and controls. Brain Res 1678:374-383
Broster, Lucas S; Li, Juan; Wagner, Benjamin et al. (2018) Spared behavioral repetition effects in Alzheimer's disease linked to an altered neural mechanism at posterior cortex. J Clin Exp Neuropsychol 40:761-776
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340

Showing the most recent 10 out of 471 publications