The Older American Independence Center (OAIC) Metabolism and Biomarkers Core in collaboration with all other Cores, utilizes translational research to determine specific mechanisms of sarcopenia and the cause of reduced physical function in elderly populations. Sarcopenia is characterized by a progressive deterioration in various physiological and metabolic processes and is associated with lower physical function. Analyses performed by the Core focus on mitochondrial function, inflammation, oxidative stress, apoptosis and autophagy, biological factors implicated to cause aging. The Core supports the hypothesis that mitochondrial dysfunction, inflammation, oxidative stress and deregulation of apoptosis and autophagy are major causes of sarcopenia and disability. Supported research proposals will contain refined questions and utilize selected methodologies addressing potential causes of sarcopenia and altered physical function. Importantly, the Core is a central facility for acquiring research data and new laboratory skills. Training and instruction is provided either one on one or through organized workshops. By acquiring new laboratory skills and techniques Junior investigators and Pepper Scholars can further develop their research interests independently. In addition, the diversity of research experience and skills among personnel within the core as well as scientists utilizing its facilities provides a rich environment for scientific discussion and collaborations. The Core also provides consultations to scientists who are either interested in new areas of research or unfamiliar with certain techniques. Thus, this Core provides the infrastructure and training necessary to develop our understanding of the mechanisms contributing to the aging process. Furthermore, we are committed to fostering novel technologies in our pursuit of deciphering the central role that mitochondrial dysfunction plays in the pathogenesis of diseases and aging. To this end we have recently developed innovative intravital-multiphoton excitation laser-scanning microscopy and high-resolution respirometry techniques to assess mitochondrial function in intact freshly isolated small (20-40 mg) muscle samples. Thus, we are now able to determine mitochondrial function in-situ, which is more reflective of the natural state. Other areas of focus include inflammation, oxidative stress (including iron deposition), apoptosis and autophagy biomarkers. In summary, by measuring a small selected set of cellular and molecular markers in skeletal muscle tissue we can assess a unique and comprehensive spectrum of age-related alterations with the goal of determining the mechanisms contributing to sarcopenia.

Public Health Relevance

The Core assays specific biological functions and pathways believed to be causal to sarcopenia and aging, instigates interventions designed to improve muscle mass and function, and determines whether these potential risk factors for disability are modifiable. Hence, the Core is a central facility for obtaining research data, providing workshops, and training in laboratory procedures for numerous Junior investigators and Pepper Scholars. This Core provides the infrastructure, highly qualified personnel, training, consultative and collaborative scientific expertise and a specific spectrum of established methodologies of biochemistry and molecular biology.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
2P30AG028740-06
Application #
8206034
Study Section
Special Emphasis Panel (ZAG1-ZIJ-8 (M1))
Project Start
Project End
Budget Start
2012-04-15
Budget End
2013-03-31
Support Year
6
Fiscal Year
2012
Total Cost
$138,278
Indirect Cost
$43,890
Name
University of Florida
Department
Type
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Tucker, Carolyn M; Wippold, Guillermo M; Guastello, Andrea D et al. (2018) Predictors of Cancer Screening Among Culturally Diverse Men. Am J Mens Health 12:837-843
Zou, Wenjuan; Fu, Jiajun; Zhang, Haining et al. (2018) Decoding the intensity of sensory input by two glutamate receptors in one C. elegans interneuron. Nat Commun 9:4311
Crowley, Samuel; Huang, Haiqing; Tanner, Jared et al. (2018) Considering total intracranial volume and other nuisance variables in brain voxel based morphometry in idiopathic PD. Brain Imaging Behav 12:1-12
Picca, Anna; Mankowski, Robert T; Burman, Jonathon L et al. (2018) Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 15:543-554
Ahn, Hyochol; Suchting, Robert; Woods, Adam J et al. (2018) Bayesian analysis of the effect of transcranial direct current stimulation on experimental pain sensitivity in older adults with knee osteoarthritis: randomized sham-controlled pilot clinical study. J Pain Res 11:2071-2082
Henderson, Rebecca M; Miller, Michael E; Fielding, Roger A et al. (2018) Maintenance of Physical Function 1 Year After Exercise Intervention in At-Risk Older Adults: Follow-up From the LIFE Study. J Gerontol A Biol Sci Med Sci 73:688-694
Bryant, Andrew J; Shenoy, Vinayak; Fu, Chunhua et al. (2018) Myeloid-derived Suppressor Cells Are Necessary for Development of Pulmonary Hypertension. Am J Respir Cell Mol Biol 58:170-180
Chatterjee, Sudeshna A; Daly, Janis J; Porges, Eric C et al. (2018) Mobility Function and Recovery After Stroke: Preliminary Insights From Sympathetic Nervous System Activity. J Neurol Phys Ther 42:224-232
Iqbal, Atif; Sakharuk, Ilya; Goldstein, Lindsey et al. (2018) Readmission After Elective Ileostomy in Colorectal Surgery Is Predictable. JSLS 22:
Ebner, Natalie C; Luedicke, Joerg; Voelkle, Manuel C et al. (2018) An Adult Developmental Approach to Perceived Facial Attractiveness and Distinctiveness. Front Psychol 9:561

Showing the most recent 10 out of 1197 publications