The major objective of the University of Alabama (DAB) Center for AIDS Research (CFAR) Flow Cytometry Core is to provide state-of-the-art flow cytometry services to support AIDS research programs. Flow cytometry is a unique and powerful technology for analyzing the fluorescent properties of particles and can be readily applied to determining the phenotype and function of cells, as well as utilized for isolating defined cell populations by sorting. In recent years the use of flow cytometric analyses in HIV research has become ever more prominent as newer approaches for dissecting the interactions between HIV and cells of the immune system have been developed;fluorescent based reporter systems have been harnessed to monitor virus replication, reactivation, and recombination;and sophisticated technological advances in instrumentation have provided new platforms for high-speed polychromatic analyses and cell sorting. The CFAR flow cytometry core is, therefore, a vital and versatile resource for promoting and facilitating AIDS research. The flow cytometry core's mission is to maximize the benefits of this technology by providing the necessary instrumentation within a well organized, centralized, facility that is capable of handling potentially infectious material. It provides training opportunities and consultations, and it also serves as a conduit for fostering interactions between investigators and laboratory personnel with diverse interests and expertise. During the previous funding period the CFAR flow cytometry core has undergone a significant equipment upgrade, with the installation of a BDFACSAria cell sorter as well as a BD-LSR-II analytical flow cytometer. The flow cytometry core has also improved its visibility and accessibility as well as enhanced education and training initiatives. As a result of these endeavors the usage of the flow cytometry core has increased more than three-fold since 2002. The flow cytometry core has supported the research activities of 184 different individuals from 69 Principle Investigators laboratories and has contributed to basic, clinical, and translational initiatives in the areas of viral pathogenesis, anti-viral research, cellular immunity, and vaccine design. The core has supported the activities of 88 NIH grants and contributed to 172 publications The aims of the flow cytometry core are to now build upon our progress-to-date by further enhancing services, and education and training activities so that users are empowered to take full advantage of the sophisticated instrumentation that is available. These efforts include, based on a needs assessment analysis, the installation of a third flow cytometer and a BioPlex flow cytometer for multiplexed analysis of biomolecules (e.g. cytokines) in the beginning of 2008. We also aim to promote innovation by working with users, and fostering collaborations and crosscore partnerships that encourage cutting-edge AIDS related research activities.

Public Health Relevance

Flow cytometric analysis has emerged as a crucial tool to study how HIV-1 infection causes disease and death. It has and will continue to be instrumental to develop a deeper understanding towards better treatment strategies and potentially a vaccine against HIV-1. The CFAR Flow Cytometry Core thus provides an essential bridge between basic research efforts and translational clinical investigation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Center Core Grants (P30)
Project #
5P30AI027767-25
Application #
8495869
Study Section
Special Emphasis Panel (ZAI1-SV-A)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
25
Fiscal Year
2013
Total Cost
$201,651
Indirect Cost
$64,005
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Yanik, Elizabeth L; Hernández-Ramírez, Raúl U; Qin, Li et al. (2018) Brief Report: Cutaneous Melanoma Risk Among People With HIV in the United States and Canada. J Acquir Immune Defic Syndr 78:499-504
Park, Sang Hyun; Zhang, Yong; Kwon, Dongjin et al. (2018) Alcohol use effects on adolescent brain development revealed by simultaneously removing confounding factors, identifying morphometric patterns, and classifying individuals. Sci Rep 8:8297
Garner, Evan F; Williams, Adele P; Stafman, Laura L et al. (2018) FTY720 Decreases Tumorigenesis in Group 3 Medulloblastoma Patient-Derived Xenografts. Sci Rep 8:6913
Stafman, Laura L; Williams, Adele P; Garner, Evan F et al. (2018) Targeting PIM Kinases Affects Maintenance of CD133 Tumor Cell Population in Hepatoblastoma. Transl Oncol 12:200-208
Ladowski, Joseph M; Reyes, Luz M; Martens, Gregory R et al. (2018) Swine Leukocyte Antigen Class II Is a Xenoantigen. Transplantation 102:249-254
Owens, Michael A; Parker, Romy; Rainey, Rachael L et al. (2018) Enhanced facilitation and diminished inhibition characterizes the pronociceptive endogenous pain modulatory balance of persons living with HIV and chronic pain. J Neurovirol :
Chakraborty, Asmi; Dorsett, Kaitlyn A; Trummell, Hoa Q et al. (2018) ST6Gal-I sialyltransferase promotes chemoresistance in pancreatic ductal adenocarcinoma by abrogating gemcitabine-mediated DNA damage. J Biol Chem 293:984-994
Stringer, Kristi Lynn; Azuero, Andres; Ott, Corilyn et al. (2018) Feasibility and Acceptability of Real-Time Antiretroviral Adherence Monitoring among Depressed Women Living with HIV in the Deep South of the US. AIDS Behav :
Merlin, Jessica S; Long, Dustin; Becker, William C et al. (2018) Brief Report: The Association of Chronic Pain and Long-Term Opioid Therapy With HIV Treatment Outcomes. J Acquir Immune Defic Syndr 79:77-82
Hamilton, Jennie A; Wu, Qi; Yang, PingAr et al. (2018) Cutting Edge: Intracellular IFN-? and Distinct Type I IFN Expression Patterns in Circulating Systemic Lupus Erythematosus B Cells. J Immunol 201:2203-2208

Showing the most recent 10 out of 955 publications