In this current age of genome biology, the primary objective of the Genomics Core is to accelerate the study of HIV and opportunistic infections associated with AIDS by providing researchers with access to genomic technologies. Examining host genetics following pathogen infection can identify new targets and pathways for drug development, reveal the genetic mechanisms of disease pathogenesis, determine predictive gene expression profiles that can guide treatment options, and identify single nucleotide polymorphisms (SNPs) associated with disease that can be used to judge the effectiveness of different antiviral drug therapies. To facilitate such research, the specific aims of the Genomics Core are as follows: (1) to provide researchers with a cost-effective mechanism to analyze mammalian gene expression at the whole genome level using microarray technology, (2) to enable the more precise quantification of both coding and non-coding gene expression using real-time quantitative RT-PCR (qRT-PCR), (3) to screen large numbers of samples for specific SNPs, and (4) to offer expertise and training in bioinformatics applications required to process and interpret the data generated by genomic technologies. The Genomics Core is currently outfitted with a suite of laboratory equipment to meet these aims (2 x ABI Prism 7700 Sequence Detection Systems, a Bio-Rad iCycler, an Affymetrix Fluidics Station 400 and a Sun Microsystems Sunfire 250 Enterprise server). Staff at the core are highly trained and skilled in areas of nucleic acid isolation, purification and quantification, and primer design, gene expression assays and bioinformatic analysis. In summary, the contribution of the Genomics Core to HIV- and AIDS-related research is best reflected by the numerous projects supported by the core, among which include the first assessment of HIV-stimulated gene expression in CD4 T cells, identification of pathways resulting in HIV induced apoptosis, the effects of methamphetamine use on HIV encephalitis, and identification of the amino acid polymorphisms that contribute to ritonavir hypersusceptibility. This proposal will allow the Genomics Core to continue bridging the gap between HIV-related research and genomic technologies in an economical manner. This will allow HIV research to benefit from the very latest developments in genome biology, which will ultimately translate into a better understanding of disease pathogenesis and the evolution of better therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Center Core Grants (P30)
Project #
5P30AI036214-16
Application #
7872812
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
16
Fiscal Year
2009
Total Cost
$309,448
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Chaillon, Antoine; Gianella, Sara; Lada, Steven M et al. (2018) Size, Composition, and Evolution of HIV DNA Populations during Early Antiretroviral Therapy and Intensification with Maraviroc. J Virol 92:
Bengtson, Angela M; Pence, Brian W; Eaton, Ellen F et al. (2018) Patterns of efavirenz use as first-line antiretroviral therapy in the United States: 1999-2015. Antivir Ther 23:363-372
Dubé, Karine; Gianella, Sara; Concha-Garcia, Susan et al. (2018) Ethical considerations for HIV cure-related research at the end of life. BMC Med Ethics 19:83
Mittal, María Luisa; Bazzi, Angela Robertson; Rangel, María Gudelia et al. (2018) 'He's not my pimp': toward an understanding of intimate male partner involvement in female sex work at the Mexico-US border. Cult Health Sex 20:961-975
Letendre, Scott; Bharti, Ajay; Perez-Valero, Ignacio et al. (2018) Higher Anti-Cytomegalovirus Immunoglobulin G Concentrations Are Associated With Worse Neurocognitive Performance During Suppressive Antiretroviral Therapy. Clin Infect Dis 67:770-777
Basova, Liana; Najera, Julia A; Bortell, Nikki et al. (2018) Dopamine and its receptors play a role in the modulation of CCR5 expression in innate immune cells following exposure to Methamphetamine: Implications to HIV infection. PLoS One 13:e0199861
Eren, Kemal; Murrell, Ben (2018) RIFRAF: a frame-resolving consensus algorithm. Bioinformatics 34:3817-3824
de Almeida, Sérgio Monteiro; Ribeiro, Clea E; Rotta, Indianara et al. (2018) Biomarkers of neuronal injury and amyloid metabolism in the cerebrospinal fluid of patients infected with HIV-1 subtypes B and C. J Neurovirol 24:28-40
Martin, Thomas C S; Rauch, Andri; Salazar-Vizcaya, Luisa et al. (2018) Understanding and Addressing Hepatitis C Virus Reinfection Among Men Who Have Sex with Men. Infect Dis Clin North Am 32:395-405
Jenks, Jeffrey D; Hoenigl, Martin (2018) Treatment of Aspergillosis. J Fungi (Basel) 4:

Showing the most recent 10 out of 921 publications