In this current age of genome biology, the primary objective of the Genomics Core is to accelerate the study of HIV and opportunistic infections associated with AIDS by providing researchers with access to genomic technologies. Examining host genetics following pathogen infection can identify new targets and pathways for drug development, reveal the genetic mechanisms of disease pathogenesis, determine predictive gene expression profiles that can guide treatment options, and identify single nucleotide polymorphisms (SNPs) associated with disease that can be used to judge the effectiveness of different antiviral drug therapies. To facilitate such research, the specific aims of the Genomics Core are as follows: (1) to provide researchers with a cost-effective mechanism to analyze mammalian gene expression at the whole genome level using microarray technology, (2) to enable the more precise quantification of both coding and non-coding gene expression using real-time quantitative RT-PCR (qRT-PCR), (3) to screen large numbers of samples for specific SNPs, and (4) to offer expertise and training in bioinformatics applications required to process and interpret the data generated by genomic technologies. The Genomics Core is currently outfitted with a suite of laboratory equipment to meet these aims (2 x ABI Prism 7700 Sequence Detection Systems, a Bio-Rad iCycler, an Affymetrix Fluidics Station 400 and a Sun Microsystems Sunfire 250 Enterprise server). Staff at the core are highly trained and skilled in areas of nucleic acid isolation, purification and quantification, and primer design, gene expression assays and bioinformatic analysis. In summary, the contribution of the Genomics Core to HIV- and AIDS-related research is best reflected by the numerous projects supported by the core, among which include the first assessment of HIV-stimulated gene expression in CD4 T cells, identification of pathways resulting in HIV induced apoptosis, the effects of methamphetamine use on HIV encephalitis, and identification of the amino acid polymorphisms that contribute to ritonavir hypersusceptibility. This proposal will allow the Genomics Core to continue bridging the gap between HIV-related research and genomic technologies in an economical manner. This will allow HIV research to benefit from the very latest developments in genome biology, which will ultimately translate into a better understanding of disease pathogenesis and the evolution of better therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Center Core Grants (P30)
Project #
5P30AI036214-17
Application #
8080820
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
17
Fiscal Year
2010
Total Cost
$307,987
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Giamouridis, Dimosthenis; Gao, Mei Hua; Lai, N Chin et al. (2018) Effects of Urocortin 2 Versus Urocortin 3 Gene Transfer on Left Ventricular Function and Glucose Disposal. JACC Basic Transl Sci 3:249-264
Jenks, Jeffrey D; Reed, Sharon L; Seidel, Danila et al. (2018) Rare mould infections caused by Mucorales, Lomentospora prolificans and Fusarium, in San Diego, CA: the role of antifungal combination therapy. Int J Antimicrob Agents 52:706-712
Drumright, Lydia N; Weir, Sharon S; Frost, Simon D W (2018) The role of venues in structuring HIV, sexually transmitted infections, and risk networks among men who have sex with men. BMC Public Health 18:225
Francesconi, Walter; Berton, Fulvia; Marcondes, Maria Cecilia G (2018) HIV-1 Tat alters neuronal intrinsic excitability. BMC Res Notes 11:275
Lin, Timothy C; Gianella, Sara; Tenenbaum, Tara et al. (2018) A Simple Symptom Score for Acute Human Immunodeficiency Virus Infection in a San Diego Community-Based Screening Program. Clin Infect Dis 67:105-111
Saag, Michael S; Günthard, Huldrych F; Smith, Davey M (2018) Baseline Genotype Testing to Assess Drug Resistance Before Beginning HIV Treatment-Reply. JAMA 320:2154
Howe, Chanelle J; Dulin-Keita, Akilah; Cole, Stephen R et al. (2018) Evaluating the Population Impact on Racial/Ethnic Disparities in HIV in Adulthood of Intervening on Specific Targets: A Conceptual and Methodological Framework. Am J Epidemiol 187:316-325
Arredondo, J; Gaines, T; Manian, S et al. (2018) The law on the streets: Evaluating the impact of Mexico's drug decriminalization reform on drug possession arrests in Tijuana, Mexico. Int J Drug Policy 54:1-8
Hoenigl, Martin; Orasch, Thomas; Faserl, Klaus et al. (2018) Triacetylfusarinine C: A urine biomarker for diagnosis of invasive aspergillosis. J Infect :
Moore, David J; Jain, Sonia; Dubé, Michael P et al. (2018) Randomized Controlled Trial of Daily Text Messages to Support Adherence to Preexposure Prophylaxis in Individuals at Risk for Human Immunodeficiency Virus: The TAPIR Study. Clin Infect Dis 66:1566-1572

Showing the most recent 10 out of 921 publications