Several cell types are involved in the inflammatory process in rheumatic diseases. Understanding the biology of these diseases will require dissecting out the contribution of each of these cell subpopulations. The Integrative Cell Phenotyping and Morphology Core will provide technical expertise, assistance and equipment at a reasonable cost to investigators in the research base whose studies require single cell analysis. In this renewal, the former Cell Phenotyping Core has expanded its capabilities to offer expertise in single cell analysis via pathology methodologies. The Core will provide training in the proper use and interpretation of specific immunophenotyping methodologies including flow cytometry, immunohistochemistry, in situ hybridization and histology. Expertise and assistance will be provided by core personnel in the following areas: Cell surface phenotype analysis (flow-based and pathology-based); Morphological cell phenotype analysis (pathology based); Intracellular cytokine analysis (flow-based, and pathology-based); Cell proliferation analysis (flow-based); Cell cycle and DNA index analysis (flow-based); Cell apoptosis analysis (flow-based and pathology-based); Gene expression analysis (flow-based and pathology-based);Calcium flux analysis (flow-based); Cell sorting (flow-based); Antigen-specific T cell analysis (flow-based). In addition, the Core will facilitate the acquisition, analysis and storage of immunophenotyping data, maintain standards and quality control for immunophenotyping procedures, and assist in the development of new techniques as needed.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR047363-10
Application #
8098920
Study Section
Special Emphasis Panel (ZAR1)
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
10
Fiscal Year
2010
Total Cost
$125,904
Indirect Cost
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Rydyznski, Carolyn E; Cranert, Stacey A; Zhou, Julian Q et al. (2018) Affinity Maturation Is Impaired by Natural Killer Cell Suppression of Germinal Centers. Cell Rep 24:3367-3373.e4
Carroll, Kaitlin R; Elfers, Eileen E; Stevens, Joseph J et al. (2018) Extending Remission and Reversing New-Onset Type 1 Diabetes by Targeted Ablation of Autoreactive T Cells. Diabetes 67:2319-2328
Goodman, Michael Aaron; Arumugam, Paritha; Pillis, Devin Marie et al. (2018) Foamy Virus Vector Carries a Strong Insulator in Its Long Terminal Repeat Which Reduces Its Genotoxic Potential. J Virol 92:
Hinks, Anne; Marion, Miranda C; Cobb, Joanna et al. (2018) Brief Report: The Genetic Profile of Rheumatoid Factor-Positive Polyarticular Juvenile Idiopathic Arthritis Resembles That of Adult Rheumatoid Arthritis. Arthritis Rheumatol 70:957-962
Gupta, Varsha; Tangpricha, Vin; Yow, Eric et al. (2018) Analysis of relationships between 25-hydroxyvitamin D, parathyroid hormone and cathelicidin with inflammation and cardiovascular risk in subjects with paediatric systemic lupus erythematosus: an Atherosclerosis Prevention in Paediatric Lupus Erythematosus Lupus Sci Med 5:e000255
Rochman, Yrina; Dienger-Stambaugh, Krista; Richgels, Phoebe K et al. (2018) TSLP signaling in CD4+ T cells programs a pathogenic T helper 2 cell state. Sci Signal 11:
Rueda, Cesar M; Rodríguez-Perea, Ana Lucia; Moreno-Fernandez, Maria et al. (2017) High density lipoproteins selectively promote the survival of human regulatory T cells. J Lipid Res 58:1514-1523
Forsberg, Matthew H; Ciecko, Ashley E; Bednar, Kyle J et al. (2017) CD137 Plays Both Pathogenic and Protective Roles in Type 1 Diabetes Development in NOD Mice. J Immunol 198:3857-3868
Moncrieffe, Halima; Bennett, Mark F; Tsoras, Monica et al. (2017) Transcriptional profiles of JIA patient blood with subsequent poor response to methotrexate. Rheumatology (Oxford) 56:1542-1551
Bertaux-Skeirik, Nina; Wunderlich, Mark; Teal, Emma et al. (2017) CD44 variant isoform 9 emerges in response to injury and contributes to the regeneration of the gastric epithelium. J Pathol 242:463-475

Showing the most recent 10 out of 214 publications