The overall goal of the HPDCF is to provide members of the Rheumatic Disease Core Center research base with fast and efficient state-of-the-art monoclonal antibody (Mab) production at economical prices. This goal is implemented through four specific aims: 1. To produce hybridomas and monoclonal antibodies (Mabs) for Rheumatic Diseases Core Center (RDCC) members in a timely and economical manner. 2. To provide RDCC members with state-of-the-art phage display technology and assist investigators in the utilization of single chain (scFv) antibody reagents. 3. To develop novel and efficient immunization strategies that facilitate the production of Mabs to problematic antigens. 4. To serve as a storage and distribution center for Mabs that are frequently utilized by members of the RDCC research base. The laboratory is committed to achieving a 100% success rate for the production of solicited Mabs. As a result, the HPDCF not only performs routine services, but also participates in research relating to the design and implementation of novel strategies for the generation of monoclonal reagents. Several of the innovative immunization protocols utilized by our laboratory have greatly facilitated the production of hybridomas to difficult antigens. Our recently incorporate phage display unit has already generated specific and highly functional single chain antibody molecules (scFv) to antigens that were refractory to antibody production using traditional methodology. If the need should arise, we will utilize our patented chicken recombinant antibody technology as a means for obtaining high affinity antibodies to highly conserved mammalian antigens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
1P30AR048311-01
Application #
6547718
Study Section
Special Emphasis Panel (ZAR1)
Project Start
2001-09-28
Project End
2006-08-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Alabama Birmingham
Department
Type
DUNS #
004514360
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Chou, Chu-Fang; Hsieh, Yu-Hua; Grubbs, Clinton J et al. (2018) The retinoid X receptor agonist, 9-cis UAB30, inhibits cutaneous T-cell lymphoma proliferation through the SKP2-p27kip1 axis. J Dermatol Sci 90:343-356
Friedman, Gregory K; Bernstock, Joshua D; Chen, Dongquan et al. (2018) Enhanced Sensitivity of Patient-Derived Pediatric High-Grade Brain Tumor Xenografts to Oncolytic HSV-1 Virotherapy Correlates with Nectin-1 Expression. Sci Rep 8:13930
Garner, Evan F; Williams, Adele P; Stafman, Laura L et al. (2018) FTY720 Decreases Tumorigenesis in Group 3 Medulloblastoma Patient-Derived Xenografts. Sci Rep 8:6913
Ladowski, Joseph M; Reyes, Luz M; Martens, Gregory R et al. (2018) Swine Leukocyte Antigen Class II Is a Xenoantigen. Transplantation 102:249-254
Harms, Ashley S; Thome, Aaron D; Yan, Zhaoqi et al. (2018) Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease. Exp Neurol 300:179-187
Lever, Jeremie M; Yang, Zhengqin; Boddu, Ravindra et al. (2018) Parabiosis reveals leukocyte dynamics in the kidney. Lab Invest 98:391-402
Chakraborty, Asmi; Dorsett, Kaitlyn A; Trummell, Hoa Q et al. (2018) ST6Gal-I sialyltransferase promotes chemoresistance in pancreatic ductal adenocarcinoma by abrogating gemcitabine-mediated DNA damage. J Biol Chem 293:984-994
Su, Hairui; Sun, Chiao-Wang; Liu, Szu-Mam et al. (2018) Defining the epigenetic status of blood cells using a cyanine-based fluorescent probe for PRMT1. Blood Adv 2:2829-2836
Shin, Boyoung; Kress, Robert L; Kramer, Philip A et al. (2018) Effector CD4 T cells with progenitor potential mediate chronic intestinal inflammation. J Exp Med 215:1803-1812
Gibson, Sara A; Yang, Wei; Yan, Zhaoqi et al. (2018) CK2 Controls Th17 and Regulatory T Cell Differentiation Through Inhibition of FoxO1. J Immunol 201:383-392

Showing the most recent 10 out of 340 publications