Rheumatic diseases are a complex group of human disorders that cause significant morbidity and mortality. With the identification of gene loci involved in human rheumatic diseases, the next objectives will be to identify the function, localization, and interactions of these gene products and to determine their role in the initiation and progression of rheumatic diseases. To advance research into molecular and cellular basis of the rheumatic diseases, the Analytical Imaging and Immunoreagent Core will support RDCC investigators research programs with state-of-the-art imaging capabilities and through the generation of essential immunoreagents. First, the Immunoreagent Component will assist P30 investigators in the development and characterization of novel monoclonal antibodies that are relevant to the study of rheumatic diseases. Second, the Imaging Component will provide center members with access to high-end imaging capabilities that include multi and single photon confocal, high resolution fluorescence using Stimulated Depletion (STED) and conventional transmission, cryo, and environmental scanning electron microscopy. In addition, the AIIC will provide expertise in the areas of exeperimental design, data collection, and data analysis. The resources provided through the AIIC far exceed the capabilities available to individual laboratories and departments and together will facilitate the detailed analyses of the pathogenic mechanisms leading to rheumatic diseases.

Public Health Relevance

A more thorough understanding of the molecular mechanisms and pathophysiology of rheumatic diseases is needed in order to develop novel therapeutic and management approaches. The AIIC will advance research by providing investigators with access to novel immunoreagentsand and high-end imaging capabilities that are not available in single laboratories or most departments. In addition, the AIIC will provide exepertise in the areas of exeperimental design, data collection and data analysis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR048311-13
Application #
8725930
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
13
Fiscal Year
2014
Total Cost
$209,062
Indirect Cost
$67,356
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Shin, Boyoung; Kress, Robert L; Kramer, Philip A et al. (2018) Effector CD4 T cells with progenitor potential mediate chronic intestinal inflammation. J Exp Med 215:1803-1812
Gibson, Sara A; Yang, Wei; Yan, Zhaoqi et al. (2018) CK2 Controls Th17 and Regulatory T Cell Differentiation Through Inhibition of FoxO1. J Immunol 201:383-392
Stafman, Laura L; Mruthyunjayappa, Smitha; Waters, Alicia M et al. (2018) Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma. Oncotarget 9:22665-22679
Jimenez, Rachel V; Wright, Tyler T; Jones, Nicholas R et al. (2018) C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance. Front Immunol 9:372
Holdbrooks, Andrew T; Britain, Colleen M; Bellis, Susan L (2018) ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor. J Biol Chem 293:1610-1622
Engle, Staci E; Antonellis, Patrick J; Whitehouse, Logan S et al. (2018) A CreER mouse to study melanin concentrating hormone signaling in the developing brain. Genesis 56:e23217
Yang, Zhengrong; Hildebrandt, Ellen; Jiang, Fan et al. (2018) Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1. Biochim Biophys Acta Biomembr 1860:1193-1204
Smith, Samuel R; Schaaf, Kaitlyn; Rajabalee, Nusrah et al. (2018) The phosphatase PPM1A controls monocyte-to-macrophage differentiation. Sci Rep 8:902
Chen, Wei; Zhu, Guochun; Jules, Joel et al. (2018) Monocyte-Specific Knockout of C/ebp? Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebp? in Osteoclast Differentiation and Function. J Bone Miner Res 33:691-703
Wang, Yong; Schafer, Cara C; Hough, Kenneth P et al. (2018) Myeloid-Derived Suppressor Cells Impair B Cell Responses in Lung Cancer through IL-7 and STAT5. J Immunol 201:278-295

Showing the most recent 10 out of 340 publications