To analyze a protein of interest, it is necessary to develop reagents that can detect it. Furthermore, to investigate the role of a protein in rheumatic disease models, it is frequently desirable to use monoclonal antibodies (mAbs) or recombinant proteins that block the function of the protein in question. A Protein Core has been established and has been productive during the last funding period. The RDCC proposes to continue support of this facility to provide services through a 1) Hybridoma facility to produce new mAbs;and 2) Production and Purification facility to produce high quality purified mAbs or recombinant proteins of interest. New services are planned to enhance the facility. Thus, the facility will continue to provide investigators with large quantities of proteins that can be used to analyze their molecules in relationship to rheumatic disease models.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR048335-10
Application #
8130962
Study Section
Special Emphasis Panel (ZAR1)
Project Start
Project End
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
10
Fiscal Year
2010
Total Cost
$201,237
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Paing, May M; Salinas, Nichole D; Adams, Yvonne et al. (2018) Shed EBA-175 mediates red blood cell clustering that enhances malaria parasite growth and enables immune evasion. Elife 7:
Wilke, Georgia; Ravindran, Soumya; Funkhouser-Jones, Lisa et al. (2018) Monoclonal Antibodies to Intracellular Stages of Cryptosporidium parvum Define Life Cycle Progression In Vitro. mSphere 3:
Kulkarni, Hrishikesh S; Elvington, Michelle L; Perng, Yi-Chieh et al. (2018) Intracellular C3 Protects Human Airway Epithelial Cells from Stress-Associated Cell Death. Am J Respir Cell Mol Biol :
Garber, Charise; Vasek, Michael J; Vollmer, Lauren L et al. (2018) Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1. Nat Immunol 19:151-161
Yokoyama, Christine C; Baldridge, Megan T; Leung, Daisy W et al. (2018) LysMD3 is a type II membrane protein without an in vivo role in the response to a range of pathogens. J Biol Chem 293:6022-6038
Wu, Xiaobo; Hutson, Irina; Akk, Antonina M et al. (2018) Contribution of Adipose-Derived Factor D/Adipsin to Complement Alternative Pathway Activation: Lessons from Lipodystrophy. J Immunol 200:2786-2797
Kulkarni, Hrishikesh S; Liszewski, M Kathryn; Brody, Steven L et al. (2018) The complement system in the airway epithelium: An overlooked host defense mechanism and therapeutic target? J Allergy Clin Immunol 141:1582-1586.e1
Triebwasser, Michael P; Wu, Xiaobo; Bertram, Paula et al. (2018) Timing and mechanism of conceptus demise in a complement regulatory membrane protein deficient mouse. Am J Reprod Immunol 80:e12997
Roberson, Elisha D O (2018) Motif scraper: a cross-platform, open-source tool for identifying degenerate nucleotide motif matches in FASTA files. Bioinformatics 34:3926-3928
Knoop, Kathryn A; Gustafsson, Jenny K; McDonald, Keely G et al. (2017) Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci Immunol 2:

Showing the most recent 10 out of 156 publications