The High Throughput Cell Analysis Core is dedicated to the identification, functional and molecular characterization of muscle-derived cell populations of healthy and diseased adult skeletal muscle. This core includes prospective isolation of muscle-derived cell subpopulations by FACS (Muscle Sorting Service), a high throughput microscopy and screening of libraries of siRNAs, and microRNAs (mlRs) and chemical compounds (High Throughput Screening Service), and in vivo cell transplantation into mouse models of disease (Cell Transplantation Service). The flow cytometry, sorting, high throughput microscopy, chemical and functional genomics screening services are available in existing cores at SBMRI but not readily accessible to the non-SBMRI muscle community. This P30 will make these services available to the San Diego muscle research community. The High Throughput Cell Analysis Core will interface with the Phenotyping Core and the Imaging Core by assisting Center investigators with the appropriate isolation and characterization of muscle-derived cells from the mouse models or human tissues that are provided by the Center member. This core will make available to all Center investigators sophisticated flow-cytometry, high throughput imaging microscopy, and screening of noncoding RNAs (siRNA and mlRNA) and chemical compounds libraries. Moreover, the Core will also provide assistance and training for animal irradiation and cell transplantation. Additional services include single cell analysis and transplantation from Luciferase transgenic mice, enabling the monitoring the homing, proliferation and differentiation of transplanted cells in vivo.
This Core will provide Center investigators with access to and training in isolation, functional analysis and characterization of muscle-derived cell populations sorted by a variety of high throughput analyses. The core will provide instruction on technology, data interpretation and troubleshooting of the proposed experiments. Overall, this Core will play an essential role in the understanding of the relative contribution of the different cell populations to skeletal muscle regeneration in physiological and pathological conditions.
Showing the most recent 10 out of 86 publications