The Rodent Histopathology Core has been approved and funded by the CCSG since the first consortium application in 2000. The Core provides high priority, quality access to services for Cancer Center members. While many commercial and academic histology services are available, no other facility is available that offers comparable quality with rapid turnaround and highly experienced professional supervision and investigator education. The Core provides the initial interpretation and understanding of an animal model and interprets this phenotype in the context of the genetic manipulation. Murine models of cancer have provided investigators with a unique opportunity to understand tumor cell biology in the setting of intricate and dynamic physiological systems. This includes the ability to not only investigate the role of specific oncogenes, tumor suppressor genes and signaling pathways in tumorigenesis, but, in contrast to in vitro systems, the interactions between the tumor and it's environment can be studied as well. Director: Peter Howley, MD, MMS(HMS) Category: 1.05 (Animal Health (Pathology/Histology)) Management: Joint (Cancer Center and Institutional) .

Public Health Relevance

The Core provides Cancer Center members with high quality professional, technical, and educational pathology services, supporting investigator research that leads to the identification of pathologic processes in mice that can be directly translatable to human disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006516-49
Application #
8601491
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
49
Fiscal Year
2014
Total Cost
$195,623
Indirect Cost
$60,776
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Kwee, Brian J; Budina, Erica; Najibi, Alexander J et al. (2018) CD4 T-cells regulate angiogenesis and myogenesis. Biomaterials 178:109-121
Madsen, Thomas; Braun, Danielle; Peng, Gang et al. (2018) Efficient computation of the joint probability of multiple inherited risk alleles from pedigree data. Genet Epidemiol 42:528-538
Chen, Jingjing; Guccini, Ilaria; Di Mitri, Diletta et al. (2018) Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nat Genet 50:219-228
Li, Andrew G; Murphy, Elizabeth C; Culhane, Aedin C et al. (2018) BRCA1-IRIS promotes human tumor progression through PTEN blockade and HIF-1? activation. Proc Natl Acad Sci U S A 115:E9600-E9609
McBrayer, Samuel K; Mayers, Jared R; DiNatale, Gabriel J et al. (2018) Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell 175:101-116.e25
Stopsack, Konrad H; Gonzalez-Feliciano, Amparo G; Peisch, Samuel F et al. (2018) A Prospective Study of Aspirin Use and Prostate Cancer Risk by TMPRSS2:ERG Status. Cancer Epidemiol Biomarkers Prev 27:1231-1233
Kamareddine, Layla; Wong, Adam C N; Vanhove, Audrey S et al. (2018) Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat Microbiol 3:243-252
Schilit, Samantha L P; Morton, Cynthia C (2018) 3C-PCR: a novel proximity ligation-based approach to phase chromosomal rearrangement breakpoints with distal allelic variants. Hum Genet 137:55-62
Sievers, Quinlan L; Gasser, Jessica A; Cowley, Glenn S et al. (2018) Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4CRBN activity. Blood 132:1293-1303
Kelley, Katherine A; Wieghard, Nicole; Chin, Yuki et al. (2018) MiR-486-5p Downregulation Marks an Early Event in Colorectal Carcinogenesis. Dis Colon Rectum 61:1290-1296

Showing the most recent 10 out of 411 publications