Many translational cancer research studies are based on the study of human cancer tissues. This research requires access to samples of human cancers and corresponding normal tissues and also requires expertise of qualified pathologists to assist in the appropriate use of tissues and interpretation of results. The purpose of this core is to provide a centralized resource for collecting and processing samples of solid tumors and hematologic malignancies based on the needs of Cancer Center investigators. The procurement of solid tumor tissues by the Core frequently involves selection of appropriate paraffin tissue blocks as well as collection of fresh-frozen tissue samples. The Core also provides a centralized laboratory resource for conducting immunohistochemistry, and in response to increased requests for immunochemistry on breast cancer samples, is developing breast cancer tissue arrays. Finally, the Core provides consultative services for the assessment of tissue samples and the development and interpretation of immunohistochemistry assays.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA006973-39
Application #
6481450
Study Section
Subcommittee E - Prevention &Control (NCI)
Project Start
1978-01-01
Project End
2006-04-30
Budget Start
Budget End
Support Year
39
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Yuan, Ming; Da Silva, Ana Cristina A L; Arnold, Antje et al. (2018) MicroRNA (miR) 125b regulates cell growth and invasion in pediatric low grade glioma. Sci Rep 8:12506
Jacobs, Michael A; Macura, Katarzyna J; Zaheer, Atif et al. (2018) Multiparametric Whole-body MRI with Diffusion-weighted Imaging and ADC Mapping for the Identification of Visceral and Osseous Metastases From Solid Tumors. Acad Radiol 25:1405-1414
Annesley, Colleen E; Rabik, Cara; Duffield, Amy S et al. (2018) Knock-in of the Wt1 R394W mutation causes MDS and cooperates with Flt3/ITD to drive aggressive myeloid neoplasms in mice. Oncotarget 9:35313-35326
Liu, Tao; Ivaturi, Vijay; Sabato, Philip et al. (2018) Sorafenib Dose Recommendation in Acute Myeloid Leukemia Based on Exposure-FLT3 Relationship. Clin Transl Sci 11:435-443
Goodman, Melody; Lyons, Sarah; Dean, Lorraine T et al. (2018) How Segregation Makes Us Fat: Food Behaviors and Food Environment as Mediators of the Relationship Between Residential Segregation and Individual Body Mass Index. Front Public Health 6:92
Ramos, Juan C; Sparano, Joseph A; Rudek, Michelle A et al. (2018) Safety and Preliminary Efficacy of Vorinostat With R-EPOCH in High-risk HIV-associated Non-Hodgkin's Lymphoma (AMC-075). Clin Lymphoma Myeloma Leuk 18:180-190.e2
Wei, Ting; Najmi, Saman M; Liu, Hester et al. (2018) Small-Molecule Targeting of RNA Polymerase I Activates a Conserved Transcription Elongation Checkpoint. Cell Rep 23:404-414
Kasamon, Yvette L; Fuchs, Ephraim J; Zahurak, Marianna et al. (2018) Shortened-Duration Tacrolimus after Nonmyeloablative, HLA-Haploidentical Bone Marrow Transplantation. Biol Blood Marrow Transplant 24:1022-1028
Wang, Yuxuan; Li, Lu; Douville, Christopher et al. (2018) Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci Transl Med 10:
Walter, Vonn; Du, Ying; Danilova, Ludmila et al. (2018) MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors. Cancer Res 78:3375-3385

Showing the most recent 10 out of 2393 publications