OF SHARED RESOURCE Since the inception of the Cell Imaging Core Facility in September of 1999, its mission has been to provide state-of-the-art cell imaging technologies to Cancer Center members. This includes different forms of light and fluroescence microscopes, stereo and confocal microscopy, and a laser microdissection system. Images can be captured with several video and CCD cameras, analyzed and manipulated with several image analysis software programs. In addition, the Core provides analytical cytometry services like immunophenotyping and cell cycle analysis. All scientists have the opportunity for expert consultation prior to and during their experiments and receive continuous technical support by the Core personnel throughout the use of any core equipment. Core technicians evaluate the facility's equipment routinely and engage in frequent technical training in order to maintain and warrant the constantly evolving needs and opportunities in this technical research area. In 2004, 57 different groups led by principal investigators from all programs of the Center, including cancer biology, hematologic malignancies, chemical therapeutics, cancer immunlogy, urologic oncology, Gl cancer, breast cancer, and viral oncology, benefited from these core services.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006973-46
Application #
7726510
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
46
Fiscal Year
2008
Total Cost
$74,394
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Lee, Alice J; Montgomery, Madeline C; Patel, Rupa R et al. (2018) Improving Insurance and Health Care Systems to Ensure Better Access to Sexually Transmitted Disease Testing and Prevention. Sex Transm Dis 45:283-286
Bharathy, Narendra; Berlow, Noah E; Wang, Eric et al. (2018) The HDAC3-SMARCA4-miR-27a axis promotes expression of the PAX3:FOXO1 fusion oncogene in rhabdomyosarcoma. Sci Signal 11:
Ambinder, Richard F (2018) A viral protein kinase drug target for tumors? J Clin Invest 128:2197-2198
Huang, Peng; Park, Seyoun; Yan, Rongkai et al. (2018) Added Value of Computer-aided CT Image Features for Early Lung Cancer Diagnosis with Small Pulmonary Nodules: A Matched Case-Control Study. Radiology 286:286-295
Saung, May Tun; Muth, Stephen; Ding, Ding et al. (2018) Targeting myeloid-inflamed tumor with anti-CSF-1R antibody expands CD137+ effector T-cells in the murine model of pancreatic cancer. J Immunother Cancer 6:118
McGrath-Morrow, Sharon A; Ndeh, Roland; Helmin, Kathryn A et al. (2018) DNA methylation regulates the neonatal CD4+ T-cell response to pneumonia in mice. J Biol Chem 293:11772-11783
Connolly, Roisin M; Fackler, Mary Jo; Zhang, Zhe et al. (2018) Tumor and serum DNA methylation in women receiving preoperative chemotherapy with or without vorinostat in TBCRC008. Breast Cancer Res Treat 167:107-116
Ye, I Chae; Fertig, Elana J; DiGiacomo, Josh W et al. (2018) Molecular Portrait of Hypoxia in Breast Cancer: A Prognostic Signature and Novel HIF-Regulated Genes. Mol Cancer Res 16:1889-1901
Kaur, Harsimar B; Guedes, Liana B; Lu, Jiayun et al. (2018) Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod Pathol 31:1539-1552
Lu, Yunqi; Hu, Zhongyi; Mangala, Lingegowda S et al. (2018) MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. Cancer Res 78:64-74

Showing the most recent 10 out of 2393 publications