Seminal gene-modified tumor cell-based clinical trials were initiated and have continued for nearly fifteen years at Johns Hopkins University (JHU). The Cell Processing and Gene Therapy Core (CPGT) was established in 2000 to manufacture clinical grade biotherapeutic material for Phase l/ll clinical gene therapy trials at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins. Oversight and resource utilization of the CPGT occurs under the direction of a dedicated Committee. The CPGT is composed of three components: a 400 square foot Process Optimization Lab (POL), a 400 square foot Materials Management/QC laboratory, and an 1800 square foot cGMP facility comprised of four manufacturing suites, a general processing area, storage, gown in and gown out areas. The POL is shared by the Cellular Therapy Core (CTC);all labs operate under shared management and oversight. This Core has been utilized by 17 faculty members who represent eleven Programs within the SKCCC. This facility supports the entire Johns Hopkins community in the translation of research concepts to human somatic cell and gene therapy clinical trials. The mission of the Core is to: 1) produce expanded cell-therapy and gene-therapy based biotherapeutic products for Phase I and II clinical studies employing current Good Manufacturing Practices (cGMP) as required by federal regulations, 2) manufacture novel biological oncolytic agents and clinical grade biotherapeutic reagents that require cGMP, as mandated by the FDA, 3) serve as a regulatory resource to the JHUSOM in the preparation of cell and gene-therapy based INDs, and 4) provide quality oversight, education and initiation of Good Laboratory Practices (GLP) in SKCCC Cores and laboratories. To date the CPGT Core has manufactured 32 different types of products including master cell banks, working cell banks, and clinical lots. This Core has been responsible for 14 SKCCC principal investigator sponsored Phase l/ll INDs supporting 24 clinical protocols with over 466 patients treated. This Core continues to facilitate clinical development of novel cancer therapies. Lay: The goal of the CPGT is to produce clinical grade biologic therapies for testing in early phase clinical trials that meet the regulatory conditions set forth by the United States FDA. These therapies are developed by SKCCC investigators and include vaccines, antibodies, peptides, and cancer targeting bacterial agents.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006973-50
Application #
8559738
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
50
Fiscal Year
2013
Total Cost
$392,248
Indirect Cost
$150,120
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Bharti, Santosh K; Mironchik, Yelena; Wildes, Flonne et al. (2018) Metabolic consequences of HIF silencing in a triple negative human breast cancer xenograft. Oncotarget 9:15326-15339
Jackson, Sadhana; Weingart, Jon; Nduom, Edjah K et al. (2018) The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 15:2
Dejea, Christine M; Fathi, Payam; Craig, John M et al. (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:592-597
Gorin, Michael A; Rowe, Steven P; Patel, Hiten D et al. (2018) Prostate Specific Membrane Antigen Targeted 18F-DCFPyL Positron Emission Tomography/Computerized Tomography for the Preoperative Staging of High Risk Prostate Cancer: Results of a Prospective, Phase II, Single Center Study. J Urol 199:126-132
Jiang, Wei; Zhou, Xiaoyan; Li, Zengxia et al. (2018) Prolyl 4-hydroxylase 2 promotes B-cell lymphoma progression via hydroxylation of Carabin. Blood 131:1325-1336
Nagai, Kozo; Hou, Lihong; Li, Li et al. (2018) Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 9:32885-32899
Sturgeon, Kathleen M; Hackley, Renata; Fornash, Anna et al. (2018) Strategic recruitment of an ethnically diverse cohort of overweight survivors of breast cancer with lymphedema. Cancer 124:95-104
Baena-Del Valle, Javier A; Zheng, Qizhi; Esopi, David M et al. (2018) MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 244:11-24
Antonarakis, Emmanuel S; Lu, Changxue; Luber, Brandon et al. (2018) Germline DNA-repair Gene Mutations and Outcomes in Men with Metastatic Castration-resistant Prostate Cancer Receiving First-line Abiraterone and Enzalutamide. Eur Urol 74:218-225
Zarif, Jelani C; Antonarakis, Emmanuel S (2018) Targeting ELK1: a wELKome addition to the prostate cancer armamentarium. AME Med J 3:

Showing the most recent 10 out of 2393 publications