The Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins is dedicated to cancer research, education and training, and care, with an overarching goal of expeditiously and strategically applying new knowledge to improve prevention, screening, detection, diagnosis and treatment of cancer in Maryland and throughout nation and the world. Through targeted outreach and research, cancer outcomes disparities are decreasing in SKCCC's catchment area, but they remain a challenge and a focus at SKCCC. This application requests continued Cancer Center Support Grant (CCSG) funding for SKCCC's Research Programs and Cores. The SKCCC comprises a multidisciplinary, interdepartmental center of The Johns Hopkins University (JHU), encompassing 34 departments in five schools. The scientific Programs of the SKCCC organize and orient the broad base of cancer research throughout JHU into teams focused on rapid translation to the clinic and to populations inside and outside its catchment area. Research conducted at SKCCC includes discovery research into the molecular genetics of human tumorigenesis, clinical trials of new cancer treatments and epidemiologic analyses of lifestyle influences on cancer mortality. The SKCCC is a leading cancer center that is providing insights into the fundamental nature of different cancers and elucidating the thousands of somatic genetic and epigenetic alterations that mark the differences from case to case. This body of work has fueled an emerging understanding that the ultimate control of cancer will require individualizing cancer care using approaches that can be deployed at a population scale. To accomplish this mission, SKCCC took critical input from its External Advisory Board and has strategically evolved since the last CCSG to: 1) augment the clinical and population impact of the discovery pipeline in cancer genetics, epigenetics and immunology generated by discipline-oriented Programs; 2) maximize the translational research output of disease-specific Programs, emphasizing the exploration of new concepts in scientifically driven clinical trials; and 3) position the population-oriented Program to identify, understand and overcome barriers responsible for disparities in cancer outcome in the catchment area. The nine SKCCC Research Programs include four discipline-oriented Programs: Cancer Biology (CB; Baylin, Velculescu), Cancer Immunology (CI; Pardoll, Drake), Cancer Molecular and Functional Imaging (CMFI; Bhujwalla, Pomper), and Cancer Chemical and Structural Biology (CCSB; Berger, Liu); four disease- specific Programs: Hematologic Malignancies and Bone Marrow Transplantation (HMBMT; Ambinder, Jones, Levis), Prostate Cancer (PC; Pienta, Denmeade, Lupold), Breast and Ovarian Cancer (BOC; Stearns, Shih), and Brain Cancer (BC; Grossman, Brem, Laterra); and one population-oriented Program: Cancer Prevention and Control (CPC; Platz, Roden). These Programs are supported by fifteen Cores, one developing Core (described in Developmental Funds) and a dedicated leadership team.

Public Health Relevance

(Public Health Relevance Statement) Cancer is a leading cause of death in the U.S. and throughout the world. With the tremendous medical advances over the past 50 years, the U.S. population's life expectancy has dramatically increased, but because the incidence of most cancers increases with age, cancers have become a profound challenge to the U.S. health care system. Minorities suffer a disproportionate burden of the cancer threat with disparate outcomes for many cancer types. To meet these challenges, dedicated cancer research at the SKCCC and elsewhere over the past 35 years has generated fundamental insights into the molecular mechanisms that cause human cancers to arise, progress and threaten life. These discoveries create new opportunities to improve screening, detection, diagnosis, prevention and treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA006973-54
Application #
9278329
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Belin, Precilla L
Project Start
1997-05-07
Project End
2022-04-30
Budget Start
2017-07-01
Budget End
2018-04-30
Support Year
54
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Giraldo, Nicolas A; Nguyen, Peter; Engle, Elizabeth L et al. (2018) Multidimensional, quantitative assessment of PD-1/PD-L1 expression in patients with Merkel cell carcinoma and association with response to pembrolizumab. J Immunother Cancer 6:99
Barberi, Theresa; Martin, Allison; Suresh, Rahul et al. (2018) Absence of host NF-?B p50 induces murine glioblastoma tumor regression, increases survival, and decreases T-cell induction of tumor-associated macrophage M2 polarization. Cancer Immunol Immunother 67:1491-1503
Taube, Janis M; Galon, Jérôme; Sholl, Lynette M et al. (2018) Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31:214-234
Krueger, Timothy E G; Thorek, Daniel L J; Denmeade, Samuel R et al. (2018) Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl Med 7:651-663
Boudadi, Karim; Suzman, Daniel L; Anagnostou, Valsamo et al. (2018) Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer. Oncotarget 9:28561-28571
Dean, Lorraine T; Gehlert, Sarah; Neuhouser, Marian L et al. (2018) Social factors matter in cancer risk and survivorship. Cancer Causes Control 29:611-618
Yuan, Ming; Da Silva, Ana Cristina A L; Arnold, Antje et al. (2018) MicroRNA (miR) 125b regulates cell growth and invasion in pediatric low grade glioma. Sci Rep 8:12506
Jacobs, Michael A; Macura, Katarzyna J; Zaheer, Atif et al. (2018) Multiparametric Whole-body MRI with Diffusion-weighted Imaging and ADC Mapping for the Identification of Visceral and Osseous Metastases From Solid Tumors. Acad Radiol 25:1405-1414
Annesley, Colleen E; Rabik, Cara; Duffield, Amy S et al. (2018) Knock-in of the Wt1 R394W mutation causes MDS and cooperates with Flt3/ITD to drive aggressive myeloid neoplasms in mice. Oncotarget 9:35313-35326
Liu, Tao; Ivaturi, Vijay; Sabato, Philip et al. (2018) Sorafenib Dose Recommendation in Acute Myeloid Leukemia Based on Exposure-FLT3 Relationship. Clin Transl Sci 11:435-443

Showing the most recent 10 out of 2393 publications