Molecular Cytogenetics enables the analysis of chromosomal changes over a broad range of focus, from whole genome composition or organization to specific gene copy number or location. It provides a comprehensive genomic context for global or targeted cell biology studies. In contrast to most other approaches, it enables a cell-by-cell survey of chromosomal content, revealing heterogeneity and possible associations within that heterogeneity. Thus cytogenetic analysis remains a simple and efficient first step towards identifying novel areas of genomic change. The Molecular Cytogenetics Core provides MSKCC investigators with effective chromosome-based analyses for human or research animal cells. It processes samples from primary cells, cell lines, or archival tissue, performs chromosome analysis on research samples, using conventional Cytogenetics (chromosome banding and karyotyping) and molecular Cytogenetics procedures based on fluorescence in situ hybridization (FISH), including Spectral Karyotyping (SKY). The Core staff works with investigators to design the most appropriate and efficient analysis for their needs and produces customized probes for specific projects. The Core has assembled a broad range of molecular Cytogenetics resources for human and mouse analysis, including plasmid and BAG clone stocks, as well as chromosome paints. Chromosome analysis is an integral part of research focusing on genomic instability. The Core's experience in karyotyping and chromosome identification provides valuable support to investigators attempting to understand the basis of chromosomal instability in cancer. In addition to specific research applications, the Core also provides an essential function in maintaining Good Laboratory Practice for MSKCC research projects that use cultured cell lines. Karyotype analysis provides basic confirmation and documentation of cell line identity, and is used to monitor chromosomal integrity.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA008748-46
Application #
8243719
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
46
Fiscal Year
2011
Total Cost
$203,093
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Lee, Stanley Chun-Wei; North, Khrystyna; Kim, Eunhee et al. (2018) Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell 34:225-241.e8
Motzer, Robert J; Escudier, Bernard; Powles, Thomas et al. (2018) Long-term follow-up of overall survival for cabozantinib versus everolimus in advanced renal cell carcinoma. Br J Cancer 118:1176-1178
Giancipoli, Romina Grazia; Monti, Serena; Basturk, Olca et al. (2018) Complete metabolic response to therapy of hepatic epithelioid hemangioendothelioma evaluated with 18F-fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography: A CARE case report. Medicine (Baltimore) 97:e12795
Karimov, Rashad R; Tan, Derek S; Gin, David Y (2018) Synthesis of the hexacyclic triterpene core of the jujuboside saponins via tandem Wolff rearrangement-intramolecular ketene hetero-Diels-Alder reaction. Tetrahedron 74:3370-3383
Fass, Josh; Sivak, David A; Crooks, Gavin E et al. (2018) Quantifying Configuration-Sampling Error in Langevin Simulations of Complex Molecular Systems. Entropy (Basel) 20:
Mauguen, Audrey; Seshan, Venkatraman E; Ostrovnaya, Irina et al. (2018) Estimating the probability of clonal relatedness of pairs of tumors in cancer patients. Biometrics 74:321-330
Tanner, Edward J; Filippova, Olga T; Gardner, Ginger J et al. (2018) A prospective trial of acute normovolemic hemodilution in patients undergoing primary cytoreductive surgery for advanced ovarian cancer. Gynecol Oncol 151:433-437
Arbour, Kathryn C; Kris, Mark G; Riely, Gregory J et al. (2018) Twice weekly pulse and daily continuous-dose erlotinib as initial treatment for patients with epidermal growth factor receptor-mutant lung cancers and brain metastases. Cancer 124:105-109
Soslow, Robert A; Murali, Rajmohan (2018) A guided tour of selected issues pertaining to metastatic carcinomas involving or originating from the gynecologic tract. Semin Diagn Pathol 35:95-107
Kao, Yu-Chien; Owosho, Adepitan A; Sung, Yun-Shao et al. (2018) BCOR-CCNB3 Fusion Positive Sarcomas: A Clinicopathologic and Molecular Analysis of 36 Cases With Comparison to Morphologic Spectrum and Clinical Behavior of Other Round Cell Sarcomas. Am J Surg Pathol 42:604-615

Showing the most recent 10 out of 8799 publications