The imaging of complex cellular structures is central to modern cancer biology, and a state-of-the-art Microscopy Facility is essential to the mission of a Cancer Center. As such, the Wistar Institute has made a strong effort to acquire the necessary instrumentation to accomplish its mission and to have it managed by a highly competent biological imaging specialist, Mr. James Hayden. The Microscopy Facility has served an important role for the members of the Wistar Cancer Center since 1973. Over the past five years, the Facility has grown tremendously and, with changes in scientific focus and the addition of new technologies and instrumentation, has evolved into a premier asset of the Institute and Cancer Center. With new leadership, a reconfiguration of space that improved utilization, new technical applications, new support services, and training at all levels, the Facility has experienced a substantial increase in Cancer Center member usage. Since 2003, thirty-one out of 32 laboratories from all three Cancer Center research programs have used services provided by the Microscopy Facility. Significant scientific accomplishments published in high impact journals have been achieved using new facility equipment, including the Xenogen MS imaging system for in vivo bioluminescent studies of tumor metastases (Huang, Kissil and Pure), the 2 Photon microscopy system to image in vivo movement of immune cells and their interaction with tumor cells (Ertl and Weninger laboratories), and the Live-Cell microscopy system to image in-vitro cell-cell and cell-matrix interactions (M. Herlyn, Heber-Katz, and Pure laboratories). Standard wide-field and confocal microscopy (Lieberman, Maul and Rauscher laboratories) available through the Facility has also aided studies in molecular interactions at the subcellular level. Since the previous renewal, approximately $514,000 was committed by the Institute for new instrumentation and upgrades.

Public Health Relevance

Without the ability to provide expensive high end microscopy instruments, instruction, and support to all Cancer Center members, they would not be able to perform many experiments without purchasing this equipment in their individual labs and this would delay valuable cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA010815-40
Application #
7945022
Study Section
Subcommittee G - Education (NCI)
Project Start
2009-04-15
Project End
2014-02-28
Budget Start
2009-04-15
Budget End
2010-02-28
Support Year
40
Fiscal Year
2009
Total Cost
$146,386
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Hu, Xiaowen; Sood, Anil K; Dang, Chi V et al. (2018) The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev 48:8-15
Saglam, Ozlen; Conejo-Garcia, Jose (2018) PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. Integr Cancer Sci Ther 5:
Liu, Shujing; Zhang, Gao; Guo, Jianping et al. (2018) Loss of Phd2 cooperates with BRAFV600E to drive melanomagenesis. Nat Commun 9:5426
Papasavvas, Emmanouil; Lada, Steven M; Joseph, Jocelin et al. (2018) Analytical ART interruption does not irreversibly change pre-interruption levels of cellular HIV. AIDS :
Duperret, Elizabeth K; Trautz, Aspen; Stoltz, Regina et al. (2018) Synthetic DNA-Encoded Monoclonal Antibody Delivery of Anti-CTLA-4 Antibodies Induces Tumor Shrinkage In Vivo. Cancer Res 78:6363-6370
Reyes-Uribe, Patricia; Adrianzen-Ruesta, Maria Paz; Deng, Zhong et al. (2018) Exploiting TERT dependency as a therapeutic strategy for NRAS-mutant melanoma. Oncogene 37:4058-4072
Kugel 3rd, Curtis H; Douglass, Stephen M; Webster, Marie R et al. (2018) Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clin Cancer Res 24:5347-5356
Fukumoto, Takeshi; Park, Pyoung Hwa; Wu, Shuai et al. (2018) Repurposing Pan-HDAC Inhibitors for ARID1A-Mutated Ovarian Cancer. Cell Rep 22:3393-3400
Bhattacharjee, Souvik; Coppens, Isabelle; Mbengue, Alassane et al. (2018) Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance. Blood 131:1234-1247
Lu, Yunqi; Hu, Zhongyi; Mangala, Lingegowda S et al. (2018) MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. Cancer Res 78:64-74

Showing the most recent 10 out of 741 publications