The Wistar Institute Cancer Center presents four Type I Shared Resources in this application: Animal Facility, Flow Cytometry, Imaging, and Protein Expression. During the past project period the Cancer Center made substantial investments in the Type I Shared Resources, utilizing over $7.2 million in capital funds and equipment grants for equipment upgrades and facility improvements. These Resources function as engines, integrated components ofthe research being conducted by Cancer Center members. The Type I Resources have demonstrated a significant impact to the scientific objectives ofthe Cancer Center, contributing to 172 of 382 (45%) of the unique cancer-related publications reported by the three scientific Programs. Following a comprehensive realignment of its Shared Resources by the appointment of dedicated leadership as described in the Cancer Center Administration section of this application, Shared Resources were grouped as Type I or Type II reflecting the intensity of collaborative input of their services. Type I Shared Resources provide critical and well-defined services that require an initial consultation followed by the delivery of time/format-defined services. Collaborative input for the type of service and data analysis is often required through consultation, yet such services generally achieve or are close in achieving full recovery of operating costs through chargebacks. Clear benchmarks and objective review criteria were introduced in order to enable timely oversight, scientific impact, quality of service, and financial strength for each Shared Resource. Regular evaluations of scientific impact for the Cancer Center (i) and sustainability of services (ii) for each resource guide the decision-making process for the Shared Resources. Overall Type I Shared Resources provide an essential cornerstone for research as their impact on discovery is inherent to the reliability, innovation, and state-of-the-art service platforms delivered.

Public Health Relevance

The deployment of state-of-the-art, technologically advanced scientific capabilities has become an indispensable requirement to conduct modern cancer research. Type I Shared Resources fulfill this need by providing well-defined, personalized service to Wistar Cancer Center investigators in support of their interprogrammatic and multidisciplinary research programs

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA010815-45
Application #
8690265
Study Section
Subcommittee G - Education (NCI)
Project Start
2014-03-01
Project End
2019-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
45
Fiscal Year
2014
Total Cost
$258,701
Indirect Cost
$116,941
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Abdel-Mohsen, Mohamed; Kuri-Cervantes, Leticia; Grau-Exposito, Judith et al. (2018) CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci Transl Med 10:
Fukumoto, Takeshi; Magno, Elizabeth; Zhang, Rugang (2018) SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Mol Cancer Res 16:1819-1825
Cañadas, Israel; Thummalapalli, Rohit; Kim, Jong Wook et al. (2018) Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med 24:1143-1150
Basu, Subhasree; Gnanapradeepan, Keerthana; Barnoud, Thibaut et al. (2018) Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1?. Genes Dev 32:230-243
Perales-Puchalt, Alfredo; Perez-Sanz, Jairo; Payne, Kyle K et al. (2018) Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. J Leukoc Biol 103:799-805
Colón, Krystal; Speicher, David W; Smith, Peter et al. (2018) S100a14 is Increased in Activated Nk Cells and Plasma of HIV-Exposed Seronegative People Who Inject Drugs and Promotes Monocyte-Nk crosstalk. J Acquir Immune Defic Syndr :
Schug, Zachary T (2018) Formaldehyde Detoxification Creates a New Wheel for the Folate-Driven One-Carbon ""Bi""-cycle. Biochemistry 57:889-890
Karakashev, Sergey; Zhu, Hengrui; Wu, Shuai et al. (2018) CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nat Commun 9:631
Jenkins, Russell W; Aref, Amir R; Lizotte, Patrick H et al. (2018) Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov 8:196-215
Barnoud, Thibaut; Budina-Kolomets, Anna; Basu, Subhasree et al. (2018) Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 78:5694-5705

Showing the most recent 10 out of 741 publications