The Stem Cells, Differentiation and Cancer Program evolved from the former Cell Growth and Differentiation Control Program with the inclusion of scientists from the former Immuno-oncology program that study B cell biology and lymphoid malignancies. The program was further strengthened by the formation of a Stem Cell Institute at Einstein with the recruitment of four cancer stem cell investigators. There are three major research themes that partially overlap: the myeloid leukemias, lymphoid malignancies and stem cell biology, with a continued emphasis on regulation at the transcriptional level. While there is a focus on hematological malignancies, the stem cell research extends to hepatic, neural, and mammary stem cells. Dr. E. Richard Stanley is leader of this newly configured program. The appointment of Dr. Amit Verma, physician scientist, as Co-Program leader and the establishment of a Hematological Malignancies Working Group has catalyzed translation and increased the number of correlative and therapeutic clinical studies. The goals of this program are: (i) to understand the molecular events that occur during the normal differentiation of stem cell progenitors into their mature counterparts; (ii) to identify the aberrations that occur in transcriptional programming that result in the malignant phenotype with a special, but not sole, focus on the hematopoietic malignancies;(iii) to identify molecules that are novel therapeutic targets, indicators of aggressiveness of disease or reporters of response to treatment;(iv) to translate laboratory research findings into correlative and, ultimately, therapeutic trials and to enhance the effectiveness of clinical regimens with existing and new chemotherapeutics and biologicals;and (v) to encourage those Program members who share a common interest in stem cells, cellular programming, and their relationship to cancer to collaborate with each other and with the members of other programs. Human tissue research has been facilitated by the acquisition of two FACS Sorter Biosafety systems dedicated to this program, a Human Pluripotent Stem Cell Center for the development and analysis of human embryonic and induced pluripotent stem cells that comprises a stem cell preparation unit, a cell sorting and xenotransplantation unit, and a stem cell bioinformatics unit. There are currently 31 program members of whom 30 are primary;nine are new recruits to Einstein. Research is supported by 12 NCI grants ($2.66M DC) and 28 other cancer-relevant peer reviewed grants ($5.35M DC). Since 2008, there have been 364 cancer-relevant publications by members of this program, of which 16% represent intra- and 17% represent inter-programmatic collaborations.

Public Health Relevance

This program seeks to understand the very early changes that occur in the genetic material of cells that makes them cancerous and to develop drugs that will prevent or reverse these changes. There is a particular interest in identifying the most primitive cells (called cancer stem cells) that are affected by these changes. Cancer stem cells may be the most resistant to drugs and radiation and may explain why cancers return after they initially respond to treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013330-41
Application #
8753333
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
2014-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
41
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
City
Bronx
State
NY
Country
United States
Zip Code
10461
Zamurrad, Sumaira; Hatch, Hayden A M; Drelon, Coralie et al. (2018) A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5. Cell Rep 22:2359-2369
Sparano, Joseph A (2018) Prognostic gene expression assays in breast cancer: are two better than one? NPJ Breast Cancer 4:11
Centini, Ryan; Tsang, Mark; Iwata, Terri et al. (2018) Loss of Fnip1 alters kidney developmental transcriptional program and synergizes with TSC1 loss to promote mTORC1 activation and renal cyst formation. PLoS One 13:e0197973
Nadaradjane, Celine; Yang, Chia-Ping Huang; Rodriguez-Gabin, Alicia et al. (2018) Improved Dose-Response Relationship of (+)-Discodermolide-Taxol Hybrid Congeners. J Nat Prod 81:607-615
Tiwari, Sangeeta; van Tonder, Andries J; Vilchèze, Catherine et al. (2018) Arginine-deprivation-induced oxidative damage sterilizes Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 115:9779-9784
Celestrin, Kevin; Díaz-Balzac, Carlos A; Tang, Leo T H et al. (2018) Four specific immunoglobulin domains in UNC-52/Perlecan function with NID-1/Nidogen during dendrite morphogenesis in Caenorhabditis elegans. Development 145:
Haider, Afreen; Wei, Yu-Chen; Lim, Koini et al. (2018) PCYT1A Regulates Phosphatidylcholine Homeostasis from the Inner Nuclear Membrane in Response to Membrane Stored Curvature Elastic Stress. Dev Cell 45:481-495.e8
Cai, Ying; Lin, Jhih-Rong; Zhang, Quanwei et al. (2018) Epigenetic alterations to Polycomb targets precede malignant transition in a mouse model of breast cancer. Sci Rep 8:5535
Li, Ke; Baker, Nicholas E (2018) Regulation of the Drosophila ID protein Extra macrochaetae by proneural dimerization partners. Elife 7:
Xie, Xianhong; Xue, Xiaonan; Strickler, Howard D (2018) Generalized linear mixed model for binary outcomes when covariates are subject to measurement errors and detection limits. Stat Med 37:119-136

Showing the most recent 10 out of 1508 publications