The Tumor Microenvironment and Metastasis Program focuses on the interactions between cancer cells and their microenvironment that are determinants of the potential of tumor cells to invade surrounding tissues, penetrate blood vessels, and ultimately enter and grow in distant tissues. Studies are directed to deciphening the signaling pathways and mechanical interactions among monocytes, macrophages, endothelial cells and carcinoma cells, and each of their supporting stroma, which contribute to the metastatic phenotype. The goals of the program are to: (1) Dissect the role the microenvironment in tumor progression and metastasis, in particular, the contribution of macrophage subpopulations to the various phases and elements of tumor progression; 2) to elucidate the molecular mechanisms of growth factor and cytokine action in regulating cell migration, dissemination, angiogenesis and invasion of distant sites by primary tumor cells; 3) to assess the role of surface molecules, such a cadherins and membrane surface oligosaccharides, in tumor progression; (4) to characterize the biochemical and structural properties of molecules that regulate cytoskeletal proteins involved in tumor cell and macrophage motility through the development of (i) fluorescent biosensors of the activity status of pathways involved in regulating cell migration in vivo and (ii) photo-switchable proteins for quantitative long-term tracking of distinct groups of cells photomarked in the primary tumor and (5) to translate these findings into correlative studies with human tissues that are predictive of metastatic potential and risk, and that identify therapeutic targets. New imaging technologies are developed in the Gruss Lipper Biophotonics Center that provides this program with unique tools that are made available to the broader AECC community through the Analytical Imaging Shared Resource. Intrinsic to the experimental approach is the development of novel mouse transgenic models with fluorescently-labeled cellular lineages. The research by members of this program is integrated by a major shared focus on breast cancer, although other tumor types are studied as well. Research in this program is supported, in part, by a program project grant which reflects, and furthers, the collaborative research of members of this program. There are currently 24 members from 11 departments, of whom 10 are new to the program, supported by 22 NCI grants ($4.1M Direct) and 18 other peer-reviewed cancer-relevant grants ($3.5M Direct). Since the last CCSG review there have been 239 cancer-relevant research papers by members of this program of which 23% represent intraprogrammatic, and 28% represent interprogrammatic publications.

Public Health Relevance

The spread of tumors from their sites of origin is usually the cause of death due to cancer. This program studies how cancer cells dislodge from tumors, invade surrounding tissues and blood vessels where they are transported in the blood stream to organs like lung, liver, and brain - a process called metastasis. This program is seeking to develop tests to identify which tumors are likely to metastasize and to develop drugs that prevent metastasis. The major focus is on

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013330-45
Application #
9369686
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Roberson, Sonya
Project Start
Project End
2019-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
45
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine, Inc
Department
Type
DUNS #
079783367
City
Bronx
State
NY
Country
United States
Zip Code
10461
Racine, Jeremy J; Stewart, Isabel; Ratiu, Jeremy et al. (2018) Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 67:923-935
Frimer, Marina; Miller, Eirwen M; Shankar, Viswanathan et al. (2018) Adjuvant Pelvic Radiation ""Sandwiched"" Between Paclitaxel/Carboplatin Chemotherapy in Women With Completely Resected Uterine Serous Carcinoma: Long-term Follow-up of a Prospective Phase 2 Trial. Int J Gynecol Cancer 28:1781-1788
Kale, Abhijit; Ji, Zhejun; Kiparaki, Marianthi et al. (2018) Ribosomal Protein S12e Has a Distinct Function in Cell Competition. Dev Cell 44:42-55.e4
Lee, Chang-Hyun; Kiparaki, Marianthi; Blanco, Jorge et al. (2018) A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition. Dev Cell 46:456-469.e4
Mao, Serena P H; Park, Minji; Cabrera, Ramon M et al. (2018) Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Res 20:131
Mocholi, Enric; Dowling, Samuel D; Botbol, Yair et al. (2018) Autophagy Is a Tolerance-Avoidance Mechanism that Modulates TCR-Mediated Signaling and Cell Metabolism to Prevent Induction of T Cell Anergy. Cell Rep 24:1136-1150
Yang, Chia-Ping Huang; Wang, Changwei; Ojima, Iwao et al. (2018) Taxol Analogues Exhibit Differential Effects on Photoaffinity Labeling of ?-Tubulin and the Multidrug Resistance Associated P-Glycoprotein. J Nat Prod 81:600-606
Guan, Fangxia; Tabrizian, Tahmineh; Novaj, Ardijana et al. (2018) Dietary Walnuts Protect Against Obesity-Driven Intestinal Stem Cell Decline and Tumorigenesis. Front Nutr 5:37
Wang, Tao; Hosgood, H Dean; Lan, Qing et al. (2018) The Relationship Between Population Attributable Fraction and Heritability in Genetic Studies. Front Genet 9:352
Chennamadhavuni, Divya; Saavedra-Avila, Noemi Alejandra; CarreƱo, Leandro J et al. (2018) Dual Modifications of ?-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity. Cell Chem Biol 25:571-584.e8

Showing the most recent 10 out of 1508 publications