The ideal specimen for conventional optical microscopy is two-dimensional. However, biological material is organized in three dimension. Using conventional fluorescence microscopy, all fluorescence generated over the depth of a biological specimen reaches the image plane. As a result, the material within the plane of focus is sharply imaged, and material outside of the focal plane produces contrast-reducing background. This problem is circumvented using confocal microscopy. With confocal microscopy, light originating from a laser-illuminated pinhole is focused on a certain point in an object. Fluorescence from the same point is subsequently imaged using a detector pinhole. Since the illumination pinhole and the back- projection of the detection pinhole have a common focus in the object, the only light that reaches the detector is that generated from the specimen layer, and virtually all out-of-focus fluorescence is eliminated from the image. Using confocal microscopy, we can resolve uptake of antisense DNA by cancer cells, organelle motility and inheritance during cell division, the effect of the tumor inducers on subcellular localization of proteins, and changes in cytoskeletal organization during establishment of cell polarization, cell migration and cell division. In January 1997, Dr. Liza Pon became the new director of the Cancer Center Confocal Microscopy Facility. She introduced a state-of-the-art Confocal Imaging System using funds obtained from a Shared Instrumentation Grant. The new Facility is now heavily used (ca. 6 hours/day) by Cancer Center members and other research scientists. The system consists of a Zeiss LSM 410 scanning laser confocal attachment mounted on a Zeiss Axiovert 100 TV inverted fluorescence microscope. Sample excitation and confocal image detection is accomplished using an argon-krypton laser and three highly sensitive photomultiplier detectors. This system is able to image up to three fluorophores simultaneously, and to obtain differential interference contrast (DIC) and phase contrast images. The software package for confocal image analysis offers three-dimensional reconstruction, stereoscopic display of three-dimensional images, time-lapse imaging, ratio imaging, photobleaching (e.g., FRAP), quantifying co-localization and morphometry. The combination of confocal microscopy with the inverted microscope and digital image analysis allows users to observe complex living or fixed system with greater accuracy and speed than ever before.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013696-30
Application #
6616889
Study Section
Project Start
2002-07-23
Project End
2003-06-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
30
Fiscal Year
2002
Total Cost
$296,752
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Sengillo, Jesse D; Lee, Winston; Bakhoum, Mathieu F et al. (2018) CHOROIDEREMIA ASSOCIATED WITH A NOVEL SYNONYMOUS MUTATION IN GENE ENCODING REP-1. Retin Cases Brief Rep 12 Suppl 1:S67-S71
Kratchmarov, Radomir; Viragova, Sara; Kim, Min Jung et al. (2018) Metabolic control of cell fate bifurcations in a hematopoietic progenitor population. Immunol Cell Biol 96:863-871
Xu, Christine L; Park, Karen Sophia; Tsang, Stephen H (2018) CRISPR/Cas9 genome surgery for retinal diseases. Drug Discov Today Technol 28:23-32
Gartrell, Robyn D; Marks, Douglas K; Hart, Thomas D et al. (2018) Quantitative Analysis of Immune Infiltrates in Primary Melanoma. Cancer Immunol Res 6:481-493
Moayedi, Yalda; Duenas-Bianchi, Lucia F; Lumpkin, Ellen A (2018) Somatosensory innervation of the oral mucosa of adult and aging mice. Sci Rep 8:9975
Sengillo, Jesse D; Lee, Winston; Bilancia, Colleen G et al. (2018) Phenotypic expansion and progression of SPATA7-associated retinitis pigmentosa. Doc Ophthalmol 136:125-133
Kroeger, Heike; Grimsey, Neil; Paxman, Ryan et al. (2018) The unfolded protein response regulator ATF6 promotes mesodermal differentiation. Sci Signal 11:
Hopkins, Benjamin D; Pauli, Chantal; Du, Xing et al. (2018) Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560:499-503
Jauregui, Ruben; Thomas, Amanda L; Liechty, Benjamin et al. (2018) SCAPER-associated nonsyndromic autosomal recessive retinitis pigmentosa. Am J Med Genet A :
Ghorpade, Devram S; Ozcan, Lale; Zheng, Ze et al. (2018) Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 555:673-677

Showing the most recent 10 out of 331 publications