The long-term goal of the Prostate Cancer Program is to address major clinical challenges associated with prostate cancer by applying knowledge of the basic biology of the disease. The goals of the Prostate Cancer Program, reflect the major investigational challenges with this disease: (i) to elucidate mechanisms underlying prostate cancer initiation;(ii) to understand whether and if so how cell types in the prostate contribute to the heterogeneity of the disease;(iii) to discriminate between men who should be treated for cure from those who do not require treatment;(iv) to improve and augment patient care and minimize racial disparities in care;and (v) to understand the relationship between bone biology and bone metastases. The hallmarks of the Prostate Cancer Program are its emphasis on these major clinical challenges and its exceptional integration of outstanding basic research and clinical studies to address these challenges. Thus, the major themes of the Prostate Program are: 1) Mechanisms and treatment of early stage prostate cancer;2) Mechanisms and treatment of advanced prostate cancer;and 3) Biology of bone and metastasis. The number of new prostate cancer patients seen has averaged 409/year. Of these many are low-risk patients that are followed without intervention. Of patients with advanced disease, 24/year (peak 30) have been enrolled on therapeutic clinical trials. 30% of patients accrued were minorities. Currently, the Prostate Cancer (PC) program consists of 21 members (12 full) from six departments within the College of Physicians and Surgeons, Mailman School of Public Health, and Columbia College. The program is enhanced by several multi-investigator grants including a NCI-funded program project grant and an NCI-funded UOl in the mouse models of human cancer consortium. For the last funding period of the grant (July 1, 2012 to June 30, 2013), the program received a total of $6.9M (direct costs) in cancer-relevant grant supporting including $2.2M (direct costs) in NCI funding, $3.4M (direct costs) in other cancer-related peer-reviewed funding, and $1.3M (direct costs) in other cancer-related non peer-reviewed funding. The total number of publications since the previous submission {i.e., 2008 to present) was 339, of which 14% were inter-programmatic, 19% intra-programmatic and 19% were in high impact journals (Impact Factor>10).
Hernandez, Celine; Huebener, Peter; Pradere, Jean-Philippe et al. (2018) HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 128:2436-2451 |
Proto, Jonathan D; Doran, Amanda C; Gusarova, Galina et al. (2018) Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity 49:666-677.e6 |
Kraakman, Michael J; Liu, Qiongming; Postigo-Fernandez, Jorge et al. (2018) PPAR? deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects. J Clin Invest 128:2600-2612 |
Lee, Younghyun; Pujol Canadell, Monica; Shuryak, Igor et al. (2018) Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model. Sci Rep 8:13557 |
Evans, Lucy P; Newell, Elizabeth A; Mahajan, MaryAnn et al. (2018) Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice. Ann Clin Transl Neurol 5:240-251 |
Cui, Xuan; Jauregui, Ruben; Park, Karen Sophia et al. (2018) Multimodal characterization of a novel mutation causing vitamin B6-responsive gyrate atrophy. Ophthalmic Genet 39:512-516 |
Nathan, J; Ruscitto, A; Pylawka, S et al. (2018) Fibrocartilage Stem Cells Engraft and Self-Organize into Vascularized Bone. J Dent Res 97:329-337 |
Dieck, Chelsea L; Tzoneva, Gannie; Forouhar, Farhad et al. (2018) Structure and Mechanisms of NT5C2 Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic Leukemia. Cancer Cell 34:136-147.e6 |
Sengillo, Jesse D; Lee, Winston; Bakhoum, Mathieu F et al. (2018) CHOROIDEREMIA ASSOCIATED WITH A NOVEL SYNONYMOUS MUTATION IN GENE ENCODING REP-1. Retin Cases Brief Rep 12 Suppl 1:S67-S71 |
Kratchmarov, Radomir; Viragova, Sara; Kim, Min Jung et al. (2018) Metabolic control of cell fate bifurcations in a hematopoietic progenitor population. Immunol Cell Biol 96:863-871 |
Showing the most recent 10 out of 331 publications