Our recently expanded Proteomics Shared Resource offers cancer researchers at the HICCC direct access to the cutting-edge proteomics technology to conduct discovery-based proteomics and targeted proteomics. During the last decade, the field of proteomics has evolved rapidly to overcome technical limitations to improve the dynamic range and reproducibility of large-scale analyses. In particular, advances in mass spectrometry (MS) instrumentation and bioinformatics for """"""""bottom-up"""""""" or """"""""shotgun"""""""" proteomic approaches have been at the core of new developments to meet the challenge of biological complexity. These methods are striving to provide a more comprehensive view of the multi-factorial processes occurring during normal development or disease progression. At the protein level, distinct changes occur during the transformation of a healthy cell into a neoplastic cell, including altered expression, differential protein modification, changes in specific activity, and aberrant subcellular localization, all ofwhich can affect cellular function. Included in this SR at CUM(J are start-to-finish protein identification and characterization services, including current quantification methods such as SILAC, which require sensitive and expensive MS-centered equipment with on-site expertise in experimental design, and state of the art informatics.
In contrast to the genome, the proteome is rapidly dynamic, depending on the status and progression of a disease. The inherent advantage studying proteomics opposed to the genome is that the identified proteins are themselves the biological endpoint. Identifying changes of protein abundance and modifications is the underlying theme in cancer proteomics. The Proteomics Share Resource provides investigators access to state ofthe art proteomics technology and offer consultation on experimental design.
Proto, Jonathan D; Doran, Amanda C; Gusarova, Galina et al. (2018) Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity 49:666-677.e6 |
Hernandez, Celine; Huebener, Peter; Pradere, Jean-Philippe et al. (2018) HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 128:2436-2451 |
Lee, Younghyun; Pujol Canadell, Monica; Shuryak, Igor et al. (2018) Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model. Sci Rep 8:13557 |
Kraakman, Michael J; Liu, Qiongming; Postigo-Fernandez, Jorge et al. (2018) PPAR? deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects. J Clin Invest 128:2600-2612 |
Cui, Xuan; Jauregui, Ruben; Park, Karen Sophia et al. (2018) Multimodal characterization of a novel mutation causing vitamin B6-responsive gyrate atrophy. Ophthalmic Genet 39:512-516 |
Evans, Lucy P; Newell, Elizabeth A; Mahajan, MaryAnn et al. (2018) Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice. Ann Clin Transl Neurol 5:240-251 |
Dieck, Chelsea L; Tzoneva, Gannie; Forouhar, Farhad et al. (2018) Structure and Mechanisms of NT5C2 Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic Leukemia. Cancer Cell 34:136-147.e6 |
Nathan, J; Ruscitto, A; Pylawka, S et al. (2018) Fibrocartilage Stem Cells Engraft and Self-Organize into Vascularized Bone. J Dent Res 97:329-337 |
Kratchmarov, Radomir; Viragova, Sara; Kim, Min Jung et al. (2018) Metabolic control of cell fate bifurcations in a hematopoietic progenitor population. Immunol Cell Biol 96:863-871 |
Sengillo, Jesse D; Lee, Winston; Bakhoum, Mathieu F et al. (2018) CHOROIDEREMIA ASSOCIATED WITH A NOVEL SYNONYMOUS MUTATION IN GENE ENCODING REP-1. Retin Cases Brief Rep 12 Suppl 1:S67-S71 |
Showing the most recent 10 out of 331 publications