The HICCC is organized to maximize interdisciplinary coordination, collaboration and planning as a matter of routine, and to actively identify and exploit new opportunities as they arise. From our perspective, the most critical elements that have contributed to our current success, and lay the foundation for our future trajectory, are: 1) The appointment of seasoned, senior leaders with the ability and commitment to promoting interdisciplinary research efforts;2) The focus on disease-specific programs through which efforts in basic, clinical, and population science converge and the translational pipeline can ultimately impact patient care, policy and our local community. Thus, we highlight and utilize extant disease-specific programs, and support these via continuing investment, while at the same time continue to develop and support our programs that are committed to basic science discoveries and ways to prevent and control cancer in the community at large. At the same time, we look for possible new, emergent scientific themes, either within programs or cancer center-wide, which can succeed by virtue of additional recruitment and investment, but also build upon or extend our mission and core competencies;3) Contribution of all HICCC members to the intellectual lives of home Departments, where new advances (e.g. network biology, synthetic chemistry, proteomics, stem cell biology, tumor immunology, chromatic biochemistry) are likely to have great potential for interdisciplinary impact on cancer care, as they are exploited and integrated;4) Heavy investment in education and training, thereby creating an environment in which HICCC members and future members are constantly exposed to multiple areas of science and medicine relevant to their research careers. Over the past project period the HICCC has used these primary approaches to continue developing and honing the trans-disciplinary, translational focus of our research base. While sponsor responsibilities are the same for research conducted within a consortium versus research conducted with unaffiliated institutions, research within a consortium allows for more systems to be put in place to mitigate risk to the investigator and the institution. However, as part of the effort to further the goal of personalized medicine, higher risk research will continue to expand and these types of trials will become a larger part of our portfolio. In the prior CCSG review, the section on trans-disciplinary coordination and collaboration received a merit rating of

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA013696-40
Application #
8753130
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-07-04
Project End
2019-06-30
Budget Start
2014-07-17
Budget End
2015-06-30
Support Year
40
Fiscal Year
2014
Total Cost
$269,590
Indirect Cost
$101,096
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Jauregui, Ruben; Park, Karen Sophia; Duong, Jimmy K et al. (2018) Quantitative progression of retinitis pigmentosa by optical coherence tomography angiography. Sci Rep 8:13130
O'Neil, Daniel S; Prigerson, Holly G; Mmoledi, Keletso et al. (2018) Informal Caregiver Challenges for Advanced Cancer Patients During End-of-Life Care in Johannesburg, South Africa and Distinctions Based on Place of Death. J Pain Symptom Manage 56:98-106
Liu, Katherine Y; Sengillo, Jesse D; Velez, Gabriel et al. (2018) Missense mutation in SLIT2 associated with congenital myopia, anisometropia, connective tissue abnormalities, and obesity. Orphanet J Rare Dis 13:138
Koch, Susanne F; Tsang, Stephen H (2018) Success of Gene Therapy in Late-Stage Treatment. Adv Exp Med Biol 1074:101-107
DiCarlo, James E; Mahajan, Vinit B; Tsang, Stephen H (2018) Gene therapy and genome surgery in the retina. J Clin Invest 128:2177-2188
Wert, Katherine J; Velez, Gabriel; Cross, Madeline R et al. (2018) Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface. Free Radic Biol Med 124:408-419
Lee, Andreia; CingĂ–z, Oya; Sabo, Yosef et al. (2018) Characterization of interaction between Trim28 and YY1 in silencing proviral DNA of Moloney murine leukemia virus. Virology 516:165-175
Schrank, Benjamin R; Aparicio, Tomas; Li, Yinyin et al. (2018) Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 559:61-66
Proto, Jonathan D; Doran, Amanda C; Gusarova, Galina et al. (2018) Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity 49:666-677.e6
Hernandez, Celine; Huebener, Peter; Pradere, Jean-Philippe et al. (2018) HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 128:2436-2451

Showing the most recent 10 out of 331 publications