This shared resource provides fee-for-service support for many aspects of the generation and study of mouse models human cancer. The ES Cell and Transgenics Facility specializes in assisting researchers with the design, generation, maintenance, and analysis of mice containing designer mutations. The staff also provides skilled assistance with a variety of protocols utilizing mouse ES cells (establishment of new lines, differentiation into specific cell types). Members of the Koch Institute have been leaders in the use of mouse models to study the molecular basis of the tumor development and increasingly in cancer treatment and resistance. The ES Cell & Transgenics Core Facility (formerly the Transgenic Animal Core) acts as a centralized service to ensure that all Kl members have access to mouse modeling technology. Specifically, the Core provides consultative services to help Kl investigators design their gene targeting and overall modeling strategy, produces genetically-modified ES cells (by either gene targeting or de novo isolation from blastocytes) and conducts injections to generate chimeric and transgenic mice. The ES Cell &Transgenics Core places equal emphasis on investigator education and provides state-of-the-art training to Kl researchers in any or all the procedures required to create targeted ES cells, transgenics, and mutant mouse models. It also maintains a repository of useful mouse strains, including strains expressing Cre or Flp recombinase under tissue-specific or inducible promoters, which are provided on demand. Over the current funding period, there has been a dramatic increase in the number of Kl members who use this Core. To ensure that services are provided in a timely manner, the Core's ES Cell Suite has been relocated to an improved location and we have increased the staff, the T ES Cell &Transgenics Core has also continued to expand its services to remain on the cutting edge. For example, it has capitalized on its access to the scientists who first generated ES cell-derived mice by tetraploid embryo complementation by learning and optimizing this technique so that can be offered as a robust service. With an excellent menu of reliable and efficient services, flexibility to accommodate unique requests and a dedicated, talented and enthusiastic staff, the ES Cell &Transgenics Core is well situated to support Kl investigators in their goal of generating increasingly precise mouse models and also to continue to expand into new areas of cancer research using cutting-edge techniques.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014051-41
Application #
8377103
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
41
Fiscal Year
2012
Total Cost
$152,267
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Lannagan, Tamsin R M; Lee, Young K; Wang, Tongtong et al. (2018) Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut :
Filbin, Mariella G; Tirosh, Itay; Hovestadt, Volker et al. (2018) Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360:331-335
Roper, Jatin; Tammela, Tuomas; Akkad, Adam et al. (2018) Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation. Nat Protoc 13:217-234
Suzuki, Hiroshi I; Spengler, Ryan M; Grigelioniene, Giedre et al. (2018) Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics. Nat Genet 50:657-661
McKenney, Anna Sophia; Lau, Allison N; Somasundara, Amritha Varshini Hanasoge et al. (2018) JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition. J Clin Invest 128:789-804
Richardson, Christopher E R; Cunden, Lisa S; Butty, Vincent L et al. (2018) A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency. J Am Chem Soc 140:2413-2416
Choudhury, Atish D; Werner, Lillian; Francini, Edoardo et al. (2018) Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI Insight 3:
Chen, Pan-Yu; Muzumdar, Mandar Deepak; Dorans, Kimberly Judith et al. (2018) Adaptive and Reversible Resistance to Kras Inhibition in Pancreatic Cancer Cells. Cancer Res 78:985-1002
Wong, Madeline Y; Chen, Kenny; Antonopoulos, Aristotelis et al. (2018) XBP1s activation can globally remodel N-glycan structure distribution patterns. Proc Natl Acad Sci U S A 115:E10089-E10098
Viswanathan, Srinivas R; Nogueira, Marina F; Buss, Colin G et al. (2018) Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer. Nat Genet 50:937-943

Showing the most recent 10 out of 904 publications