Through collaboration, training and technical assistance, the Kl Bioinformafics &Computing Core (BCC) Facility ensures that Kl researchers and other Kl Core Facilities are positioned to fully utilize the power of bioinformafics and statistics in their research. In the previous period, the BCC has both evolved and expanded its services to respond to the rapid advances and growing demand for computation capabilifies. The BCC provides Kl researchers with bioinformatics expertise in protein and genome sequence analysis and annotation, analysis of a variety of different microarray applicafions and interpretation of data from next generafion sequencing. In addifion, the Core provides the desktop and server-based IT services required to support the data-intensive technologies and applications essential for modern cancer research. In these capacities, the BCC has contributed to the projects of more than 85 researchers in the current funding period. The BCC is staffed by outstanding scientists who are expert in a wide array of computational methodologies and have an established track record for acquiring or developing new approaches. They also offer expert training to help Kl investigators develop their own bioinformafics skills. In the upcoming period, the BCC will confinue its support of a wide range of bioinformafics methods while expanding both scientific and IT capabilities in response to the rapid development of new technologies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014051-43
Application #
8680156
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
43
Fiscal Year
2014
Total Cost
$212,179
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Berger, Gilles; Grauwet, Korneel; Zhang, Hong et al. (2018) Anticancer activity of osmium(VI) nitrido complexes in patient-derived glioblastoma initiating cells and in vivo mouse models. Cancer Lett 416:138-148
Lo, Justin H; Hao, Liangliang; Muzumdar, Mandar D et al. (2018) iRGD-guided Tumor-penetrating Nanocomplexes for Therapeutic siRNA Delivery to Pancreatic Cancer. Mol Cancer Ther 17:2377-2388
Phillips, Angela M; Doud, Michael B; Gonzalez, Luna O et al. (2018) Enhanced ER proteostasis and temperature differentially impact the mutational tolerance of influenza hemagglutinin. Elife 7:
Johnson, Hannah; White, Forest M (2018) Quantitative Analysis of Tyrosine Kinase Signaling Across Differentially Embedded Human Glioblastoma Tumors. Methods Mol Biol 1711:149-164
Tentori, Augusto M; Nagarajan, Maxwell B; Kim, Jae Jung et al. (2018) Quantitative and multiplex microRNA assays from unprocessed cells in isolated nanoliter well arrays. Lab Chip 18:2410-2424
Parisi, Tiziana; Balsamo, Michele; Gertler, Frank et al. (2018) The Rb tumor suppressor regulates epithelial cell migration and polarity. Mol Carcinog 57:1640-1650
Gam, Jeremy J; Babb, Jonathan; Weiss, Ron (2018) A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity. Nat Commun 9:2430
Chen, Huihui; Cho, Kin-Sang; Vu, T H Khanh et al. (2018) Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 9:3209
Tam, Brooke E; Hao, Yining; Sikes, Hadley D (2018) An examination of critical parameters in hybridization-based epigenotyping using magnetic microparticles. Biotechnol Prog 34:1589-1595
Ramadi, Khalil B; Dagdeviren, Canan; Spencer, Kevin C et al. (2018) Focal, remote-controlled, chronic chemical modulation of brain microstructures. Proc Natl Acad Sci U S A 115:7254-7259

Showing the most recent 10 out of 904 publications