Based on our experience, each new investigator requires approximately $1.5 million to establish an independent research program and obtain external support over an initial three-year period. The Institute guarantees to support the research programs of new investigators until they achieve independent support. We encourage new investigators to recruit postdoctoral fellows or graduate students, who are usually supported by Institute funds pending receipt of individual fellowships or other support. During the past five years (2003-2007) The Salk Institute invested more than $6.5 million (not including developmental funds from the CCSG) to establish the research programs of new investigators in the Cancer Center. (This amount does not include additional startup funds committed but not yet expended by recent appointees.) Support from CCSG developmental funds, although it was only a portion of the total required, was crucial in helping new appointees during the current funding period to establish and develop their independent research programs quickly and effectively. We anticipate that we will recruit one or two new investigators per year into the Cancer Center (this has been the average for the past several years). If each investigator requires two years to achieve independent funding, up to four investigators will require developmental support each year. We request funds to provide partial support for two investigators per year from the CCSG. As a result of an extensive review of Institute research programs over the past two years, several areas have been identified as high priorities for new faculty recruitment: biophotonics (advanced imaging), innate immunity, stem cell biology, metabolism, and inflammation biology. These areas will broaden and strengthen our cancer research program. We anticipate that two to three new faculty appointments will be made in each of these areas over the next several years, and that most of these new faculty members will become members of the Cancer Center.
Ogawa, Junko; Pao, Gerald M; Shokhirev, Maxim N et al. (2018) Glioblastoma Model Using Human Cerebral Organoids. Cell Rep 23:1220-1229 |
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859 |
Benegiamo, Giorgia; Mure, Ludovic S; Erikson, Galina et al. (2018) The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab 27:404-418.e7 |
Sulli, Gabriele; Rommel, Amy; Wang, Xiaojie et al. (2018) Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature 553:351-355 |
Yoon, Young-Sil; Tsai, Wen-Wei; Van de Velde, Sam et al. (2018) cAMP-inducible coactivator CRTC3 attenuates brown adipose tissue thermogenesis. Proc Natl Acad Sci U S A 115:E5289-E5297 |
Xia, Yifeng; Zhan, Cheng; Feng, Mingxiang et al. (2018) Targeting CREB Pathway Suppresses Small Cell Lung Cancer. Mol Cancer Res 16:825-832 |
Stern, S; Santos, R; Marchetto, M C et al. (2018) Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients' responsiveness to lithium. Mol Psychiatry 23:1453-1465 |
Limpert, Allison S; Lambert, Lester J; Bakas, Nicole A et al. (2018) Autophagy in Cancer: Regulation by Small Molecules. Trends Pharmacol Sci 39:1021-1032 |
Mure, Ludovic S; Le, Hiep D; Benegiamo, Giorgia et al. (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359: |
Lu, Zhimin; Hunter, Tony (2018) Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem Sci 43:301-310 |
Showing the most recent 10 out of 457 publications