The Transgenic Mouse and Embryonic Stem Cell Facility is a shared facility designed to generate transgenic and knockout mice for researchers at the University of Chicago. Most of these experiments are being conducted by members of the University of Chicago Cancer Research Center, and many of these experiments have direct implications not only for our understanding of cancer, but also for generating animal model systems that will be important for developing new and improved diagnostic and therapeutic tools for cancer. Five services are currently provided by the Facility: (1) preparation of transgenic mice, through the F1 generation; (2) embryo freezing; (3) clean mouse strain rederivation from either frozen embryos or embryos obtained from non-pathogen free mice; (4) transfer of embryonic stem cells to mouse blastocysts, and subsequent generation of chimeric, heterozygous and homozygous mice targeted for a particular null mutation and (5) timed mouse pregnancies. Projects carried out by the facility have been funded by a peer-reviewed federal or private grant, and the experimental protocol receives prior approval from the University Animal Care Committee. Projects include: (l) targeting growth factors and cytokines to stratified squamous epithelia, and examining the relation of these alterations to hyperproliferative disorders of the epidermis; (2) altering the expression of cell survival factors in mice and examining the molecular consequences; (3) perturbing growth control and inflammatory responses in cells of the immune system; (4) examining the roles of chromosomal breakpoint genes on tumorigenesis; (5) examining the functions of transcription factors on cell-type specific gene expression, development and differentiation, and assessing the biological consequences and relevance to cancer when they are misregulated; (6) exploring mechanisms of somatic hypermutation of genes in B-cell development; (7) understanding the mechanisms underlying processing and presentation of major histocompatibility antigens, and how these processes can go awry in genetic disorders. These studies have been central to the investigative goals of cancer researchers on campus; the contributions are of fundamental importance to our understanding of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-26
Application #
6395574
Study Section
Project Start
1999-08-01
Project End
2000-07-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
26
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
225410919
City
Chicago
State
IL
Country
United States
Zip Code
60637
Szmulewitz, Russell Z; Peer, Cody J; Ibraheem, Abiola et al. (2018) Prospective International Randomized Phase II Study of Low-Dose Abiraterone With Food Versus Standard Dose Abiraterone In Castration-Resistant Prostate Cancer. J Clin Oncol 36:1389-1395
Boisclair Lachance, Jean-François; Webber, Jemma L; Hong, Lu et al. (2018) Cooperative recruitment of Yan via a high-affinity ETS supersite organizes repression to confer specificity and robustness to cardiac cell fate specification. Genes Dev 32:389-401
Kudron, Michelle M; Victorsen, Alec; Gevirtzman, Louis et al. (2018) The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors. Genetics 208:937-949
Maron, Steven B; Alpert, Lindsay; Kwak, Heewon A et al. (2018) Targeted Therapies for Targeted Populations: Anti-EGFR Treatment for EGFR-Amplified Gastroesophageal Adenocarcinoma. Cancer Discov 8:696-713
Kane, Melissa; Deiss, Felicity; Chervonsky, Alexander et al. (2018) A Single Locus Controls Interferon Gamma-Independent Antiretroviral Neutralizing Antibody Responses. J Virol 92:
Zeineddine, Hussein A; Girard, Romuald; Saadat, Laleh et al. (2018) Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest :
Gamazon, Eric R; Trendowski, Matthew R; Wen, Yujia et al. (2018) Gene and MicroRNA Perturbations of Cellular Response to Pemetrexed Implicate Biological Networks and Enable Imputation of Response in Lung Adenocarcinoma. Sci Rep 8:733
Xiao, Annie; Crosby, Jennie; Malin, Martha et al. (2018) Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys 19:205-213
Day, Kasey J; Casler, Jason C; Glick, Benjamin S (2018) Budding Yeast Has a Minimal Endomembrane System. Dev Cell 44:56-72.e4
Girard, Romuald; Zeineddine, Hussein A; Koskimäki, Janne et al. (2018) Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res 122:1716-1721

Showing the most recent 10 out of 668 publications