The Vector Shared Resource (VSR). Advances in techniques for efficient cellular engineering using virusbased gene delivery vehicles (""""""""vectors"""""""") have made it feasible to utilize gene transfer as a methodology for elucidating functions of specific genes, by examining consequences of their over-expression or inhibition. The Vector Shared Resource is a new Shared Resource, established to meet the increasing demand both for routine construction and production of viral vectors and for assistance in developing new vectors, both for cell culture and in vivo animal experiments. The objective of the Vector Shared Resource is to promote and Facilitate basic and translational research by providing JCCC investigators with access to vector technologies that enable efficient gene transfer to mammalian cells, both in culture and in vivo. Our services include: (1) provision, at minimal cost, of various pre-made retroviral, lentiviral and adenoviral vector stocks expressing standard marker genes to utilize in preliminary experiments, as well as a library of available vectors expressing various mammalian genes and corresponding inhibitory sequences;(2) construction and production of custom viral vectors that contain a specific sequence(s) of interest (including wild type and mutant cDNAs with or without epitope tags, dominant-negative expression constructs, antisense mRNAs, siRNAs, etc.) for individual researchers;and (3) provision of educational and advisory resources for researchers with limited experience in viral vector technologies, but who wish to utilize such technologies for efficient functional expression of genetic sequences of interest in vitro and/or in vivo. As the use of viral vector technology requires specialized expertise and resources often not found in an individual investigator's laboratory, offering easy access to these technologies, consolidated in the form of a Shared Resource, can significantly facilitate and expand the scope of JCCC research activities. Furthermore, our services are more cost-effective than utilizing the limited commercial sources offering such technologies. Further value is added by customized technical support available from accessible and knowledgeable Shared Resource staff who can work closely with investigators to troubleshoot and optimize gene transfer experiments, assist with institutional regulatory compliance documents and grant proposal submissions and who are actively engaged in development and application of new vector technologies. Initiated in 2003, the Vector Shared Resource has been used by members of the Signal Transduction and Therapeutics, Women's Cancer, Hematopoietic Malignancies, Gene Regulation, Cancer Cell Biology, Tumor Immunology, Thoracic Oncology, Genitourinary Oncology, Molecular Epidemiology and Cancer Molecular Imaging Program Areas for consultation, vector construction, small and large scale preparation of vector stocks and additional services. (Please also see Section 6.2.3 on Shared Resources in the History, Description, Essential Characteristics). 25 Cancer Center members representing 10 Cancer Center Program Areas utilized the services of the Vector Shared Resource during the reporting period. This is a new shared resource.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016042-34
Application #
7944613
Study Section
Subcommittee G - Education (NCI)
Project Start
2009-04-02
Project End
2013-11-30
Budget Start
2009-04-02
Budget End
2009-11-30
Support Year
34
Fiscal Year
2009
Total Cost
$115,875
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Yang, Qing; Fung, Wing K; Li, Gang (2018) Sample size determination for jointly testing a cause-specific hazard and the all-cause hazard in the presence of competing risks. Stat Med 37:1389-1401
Seo, Jai Woong; Tavaré, Richard; Mahakian, Lisa M et al. (2018) CD8+ T-Cell Density Imaging with 64Cu-Labeled Cys-Diabody Informs Immunotherapy Protocols. Clin Cancer Res 24:4976-4987
Ribas, Antoni; Wolchok, Jedd D (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350-1355
Wang, Hong; Chen, Xiaolin; Li, Gang (2018) Survival Forests with R-Squared Splitting Rules. J Comput Biol 25:388-395
Yu, Jingyi; Seldin, Marcus M; Fu, Kai et al. (2018) Topological Arrangement of Cardiac Fibroblasts Regulates Cellular Plasticity. Circ Res 123:73-85
Hong, Aayoung; Moriceau, Gatien; Sun, Lu et al. (2018) Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma. Cancer Discov 8:74-93
Epeldegui, Marta; Magpantay, Larry; Guo, Yu et al. (2018) A prospective study of serum microbial translocation biomarkers and risk of AIDS-related non-Hodgkin lymphoma. AIDS 32:945-954
Hsu, Jeffrey J; Lu, Jinxiu; Umar, Soban et al. (2018) Effects of teriparatide on morphology of aortic calcification in aged hyperlipidemic mice. Am J Physiol Heart Circ Physiol 314:H1203-H1213
Woo, Jin Seok; Srikanth, Sonal; Kim, Kyun-Do et al. (2018) CRACR2A-Mediated TCR Signaling Promotes Local Effector Th1 and Th17 Responses. J Immunol 201:1174-1185
Patananan, Alexander N; Sercel, Alexander J; Teitell, Michael A (2018) More than a powerplant: the influence of mitochondrial transfer on the epigenome. Curr Opin Physiol 3:16-24

Showing the most recent 10 out of 767 publications